Углеткань своими руками

Поделки своими руками для автолюбителей

Как покрыть деталь карбоном самому

В этой статье хочу поговорить и рассказать вам, как можно самому покрыть карбоном зеркала или другие детали кузова автомобиля. Сам процесс мне показался не очень трудоёмким, главное соблюдать последовательность и не спешить..

Какие материалы нам понадобятся для этой процедуры.

  • Наждачная бумага — мне нужна была наждачная бумага с липучкой, вам может быть понадобится простая, в зависимости с каким инструментом вы работаете. Бумага нужна градации: 180, 150, 120 и 80. Также для мокрой чистки нам понадобиться наждачка. 320, 400 и 600.
  • для обрезания углеткани, понадобится болгарка или дремель.
  • простой автомобильный лак.
  • сама угля ткань, 1 квадратный метр.
  • полиэфирная или эпоксидная смола с отвердителем.
  • малярный скотч и растворитель 646 или 647.
  • и кисточка, шириной приблизительно 5 см.
    Вот это все материалы, которые нам потребуются для нашего процесса.

Теперь начинаем сам процесс.

Берем зеркало и аккуратно со всех сторон зашкуриваем 80 наждачкой.

Далее наносим тонкий слой смолы на всю поверхность зеркала и ждем приблизительно 20 минут, чтобы она подсохла.

Далее, отрезаем кусок углеткани такого размера, чтобы как раз хватило на зеркало и аккуратно приклеиваем углеткань на зеркало, всё аккуратно разглаживает, чтобы углеткань хорошо прилегала по всей поверхности и оставляем так на 24 часа.

После того, как прошли сутки, нужно слоями наносить смолу прямо на поверхность карбона. Наносим 3 слоя с промежутком в 1 час, не забываем при этом добавить к смоле отвердитель. Опять всё оставляем сохнуть на 24 часа.

Далее, берём наши зеркала и начинаем обрезать, и удалять лишние части углеткани.

После того, как всё выровняли и удалили лишнее, начинаем зачищать смолу по всему зеркалу. Порядок наждачки такой 120,150,180, потом с водой чистим 320.

Затем как все будет гладенько, подготавливаем зеркало к покрытию лаком. Протираем зеркала обезжиривателем, разводим лак и наносим 2-3 слоя с промежутком в 10-15 минут.

На этом вроде бы стоило и остановиться, но я всё таки ещё раз, через сутки, зачистил весь лак и покрыл ещё 3 слоями, чтобы получился глубокий, насыщенный цвет.

Вот на этом данную процедуру я считаю законченной.

Блог им. daen — Самодельная карбоновая рама для памп-трека

В этом посте хочу поделится с вами историей создания рамы из углеволокна с параллельным наступанием на грабли изучением технологий.
Внимание, много букв и фотографий!

Немного втупительной воды.

Дело началось в декабре 2017 года со спонтанной покупки вилсета Easto n Heaven 26” за какие-то смешные деньги (кажется 4000р). Зачем они мне нужны долго думать не пришлось, задумал я сборку велосипеда для памп-трека. Но была проблема – задняя втулка 142х12 и из-за древности колёс найти адаптеры под 135 не удалось. Купить подходящую раму под колесо, с необходимой геометрией, тоже не представлялось возможным. На этом данная история могла закончится, но я парень не простой – решил, что сам сделаю раму! Руки есть и инструмент вроде тоже.

Решение сделать самому было не безосновательным и легкомысленным, опыт фреймбилдинга уже был. Получить удалось его работая в KUVALD A Bikes . Это была воля случая, я искал подработку и размышлял о постройке рамы из водопровода (так, для освоения процессов), и Кувалде требовался человек. А так как мы с Антоном Непочатым, на тот момент, жили в соседних домах – все звёзды сошлись удачно.

Итак, о самом создании. Сначала думал сварить раму из алюминия, даже начал рисовать 3 D модель под имеющийся сортамент труб, но от этой мысли быстро отказался т.к. это было бы очень скучно. Весной 2017 года я уже успел сделать для себя циклокроссовую раму по технологиям Кувалды и “повторять” её в другой геометрии не захотелось.

И тут пришла гениальная идея слепить её из углеволонка и эпоксидки. У меня даже имелось немного ткани и смолы, в том же году чинил перья на шоссейной раме приятеля и некоторое понимания процесса уже было.

Начало.
Выбор технологического процесса был не простым. Большую часть информации черпал из инстаграмм и ютуб. Я был удивлён, сколько полезного можно найти на этих развлекательных сервисах. Одних картинок конечно же было мало и приходилось так же искать нужную информацию на зарубежных форумах.

Остаток зимы 2018г. ушёл на теорию и практику по работе с материалами, планирование задач и проектирование модели. А также закупку материалов и оборудования.

Сразу были куплены: вакуумный насос, коврик для раскроя, всякие ножи и лезвия, плёнки, вспомогательные материалы для формовки, углеткань, смола, разделители и ещё разные мелочи. На этом этапе удалось потратить почти 40т.р., что уже не давало быстро забросить затею в случае неудачи. А к лету собраны стапель и печка (ещё 40т.р)

Из практики первым делом решил освоить соединение труба к трубе. Для этого закупил дешёвой ткани с Али и изготовил из неё несколько труб методом намотки на оправку (ПВХ сантехническая труба). Ну и собственно соединил их под углом. Действия при этом совершенно простые – торцовка одной из труб, склейка, нанесение спец. шпаклёвки из эпоксидки и микросферы, выведение переходов наждачкой и, самое главное, обмотка волокном получившегося узла.


Далее, для контроля качества, разрезаем получившийся узел пополам, любуемся, делаем выводы (или делаем вид, что делаем выводы).
В тот же временной отрезок была невнятная попытка сделать перья. И вот они первые грабли, решил я намотать их на позитивную оправку, напечатанную из HIPS пластика, которую подразумевалось после растворить в цитрусовом уксусе. Опыт был быстро признан неудачным.

На основании полученного опыта я принял единственное верное решение – заказать на передний треугольник трубы филаментной намотки у Tim Crossman (к сожалению, он больше не производит их). За всего 180$ я получил красивые верхнюю, нижнюю, подседельную трубы и норм такой стакан.

С кареточным стаканом думать не пришлось, был в наличии алюминиевый BSA от Кувалды.
Оставалось придумать как сделать перья и дропауты.
Дропауты.
Для дропаутов была изготовлена 12мм карбоновая плита по очень уеб дурацкой технологии. Это около 60 слоёв китайской 200гр/кв.м ткани, вырезанные вручную под углами 0/90 и -45/45 градусов. Сказать, что я упоролся это раскраивать, ничего не сказать. Ну и эти слои поочерёдно укладывались с одновременной ручной пропиткой. Далее полученный пакет закрывался техническими тканями/плёнками и под вакуум минимум на 8 часов. Она была изготовлена и выкинута в самый дальний угол мастерской, ибо так производить пластины нельзя.

Читать еще:  Технология производства тротуарной плитки вибропрессованием

Спустя почти год я изготовил новую пластину 10мм уже из нормальной ткани 630гр/кв.м, где понадобилось всего 16 слоёв. Ну и пропитка производилась по технологии вакуумной инфузии. Не сказать, что она прошла гладко, но учитывая толщину пакета и площадь, качество изделия вышло нормальное. Далее плита отправилась на фрезеровку, что бы получились сами дропауты.


Почему я их решил сделать из угля? Да, из алюминия было бы дешевле, быстрее и 100% надёжно, но мне были интересны возможности углепластика при не типичных нагрузках.

Матрицы.
Для перьев в итоге выбрал технологию формовки в негативной матрице путём раздувания. И для начала нужно было изготовить матрицы. Фрезеровку на ЧПУ бюджет не позволял, поэтому были распечатаны модели перьев на 3 D принтере в хорошем качестве и с них планировалось снять стеклопластиковые матрицы. И это, пожалуй, был самый трудоёмкий процесс. Я даже не знаю как передать всю боль, через которую пришлось пройти.

Во-первых, нужно как-то освоить и соблюдать технологический процесс.
Во-вторых, очень долгий цикл изготовления (при этом нужно пристально следить за временем, иначе – запоротый материал).
В-третьих, ВСЁ В БЛ ДУРАЦКОЙ СМОЛЕ!

Вкратце это выглядит так – делаем опалубку по середине мастер-модели, все щели замазываем и ровняем, наносим разделитель, ждём, наносим гелькоут, ждём, выкладываем стеклоткань и пропитываем смолой, иии… ждём. Через 24 часа можно делать 2-ю часть – отрываем опалубку и процесс повторяется с момента нанесения разделителя. По прошествии ещё суток готовую матрицу можно раскрывать, выковыривать мастер-модель и любоваться полученным результатом.

Но не всё так просто. Более-менее годная матрица получилась с 4 раза. В первых двух случаях у меня был некачественный гелькоут ЭТАЛ (гори в аду ЭТАЛ). Гелькоут это наполненная эпоксидная смола для формирования лицевых поверхностей и острых кромок устойчивых к скалыванию. И как вы могли догадаться, острая кромка не получалось. Для этого были ещё и другие основания, но на столько подробно не буду писать.

С покупкой импортного дорогого гелькоута всё пошло гораздо глаже и к осени 2018г. у меня были готовы матрицы для перьев.

И остаются ещё четыре время затратных пункта — это изготовление стапеля, печки, самих перьев и сборка рамы.

Стапель.
Тут всё просто – посмотрел картинок в интернете, спроецировал свой опыт, закупил конструкционного профиля и алюминиевых заготовок на 20т.р. и собрал его.



Печь.
Условно всё так же. ПИД контролер отечественной фирмы, пара нагревательных ковриков от 3 D принтера, ОСБ и утеплитель из Леруа, горстка шурупов и вуаля.



Перья.
Дело было опять с использованием жидкой смолы и тряпки. А также шоссейной камеры.

Простые действия – пропитал смолой, намотал в нужных направлениях, вложил в матрицу, надул камеру и через 24 часа можно смотреть что получилось.
Из-за того, что камера в сложенном состоянии 21мм, а высота верхнего пера 20мм, получился жирный облой в 2мм толщиной. Как на первом пере, так и на втором. И опять же, в целях эксперимента было решено так и оставить (ну и переделывать матрицу очень не хотелось)

Нижние перья с первого раза вообще не получились. При накачивании лопнула камера.

Второй раз удачнее, но из-за того, что использовал угле-рукав, а не ткань, не продавилась середина на верхней плоскости перьев. На этот момент сил и средств делать третий раз заново не было, и я решил сделать “косметический ремонт” микросферой обтянув сверху ещё одним слоем чулка. Это сильно утяжелило изделие, но в прочности сомнений нет.

К слову. Глядя на ремонт карбона и прочие поделки всех вело-мастерских, кто не стесняется выкладывать фото в сеть, у меня всё выполнено было на высшем уровне. Я разве что не загонялся по косметике в ноль.

Сборка.
Традиционный набор простых действий – выставить стапель, отторцевать/подогнать трубы и перья, склеить, вывести шпаклёвкой переходы, обмотать углём получившиеся узлы, запечь.

Передний треугольник переклеивал 2 раза, перья/дропауты 3 раза. Почему не помню, но что-то не устраивало. И вообще этот процесс растянулся на полгода, то покататься в горах хочется, то на работе завал.

Обматывать узлы я сразу решил однонаправленным препрегом, ибо мокрая намотка совсем не вариант. Препрег – это волокно, пропитанное специальной смолой, которая при комнатной температуре не обладает текучестью и отверждается при температурах от 100 градусов. Им очень легко работать, просто приклеивая по кусочку слой за слоем. И главное, что нет жёсткого ограничения по времени работы (живёт он 2-3 недели при 25 градусах). С ним обмотку можно выполнить в сотни раз качественней, контролируя направление каждого жгутика углеволокна. А при должной сноровке финишная обработка будет практически не нужна.

У меня же поверхность получилась не ровной т.к. я делал большое количество перехлёстов полосок препрега. Не было цели сделать супер красиво и тем самым сильно усложнив задачу.

И так, все узлы обмотаны, рама упакована в вакуумную плёнку и помещена в печь. Самые долгие 3 часа ожидания за всю постройку… И готово!

Байк собран, обкатан и даже держит кривые 360 с баннихопа с моими 85кг веса.
Рама, к слову, вышла 1150 грамм. Весь байк 8,5кг на данный момент. Изначально был 8,3кг, но цепь от мультиспида не прижилась, вынос весом 90гр сменил на более длинный (31мм на 50мм) и герметика пришлось долить в покрышки. На каноничную сборку точно не претендую. Просто брал доступные и в меру лёгкие компоненты.

За сезон покатался на нём в боевом режиме немного, но достаточно чтобы понять, что почти все мои решения работают, на первый взгляд страшные косяки оказались не такими критичными (в рамках проекта первой рамы).

Как делают карбон для суперкаров: чем он так хорош

Это не принципиально новая модель Bugatti — она построена на базе Chiron. Её внешний вид значительно отличается от прообраза. Гиперкар получил новый обвес, спойлер и другие детали, которые увеличивают его прижимную силу до более чем 450 килограмм — это на 90 килограмм больше, чем у предшественника. У машины такой же двигатель на 8 литров и 16 цилиндров, а максимальная скорость ограничена на отметке 380 километров в час. У Divo прокачанные ходовая и тормозная системы, его позиционируют для использования на треке, но гонять на таких точно будут и за его пределами.

Читать еще:  Холодная штамповка листового металла

Значимой разницей между Divo и Chiron также стал вес — он уменьшился на 35 килограмм. Это стало возможным за счёт повсеместного использования карбона. Да, настолько большой кусок текста в начале этой статьи нужен был именно для того, чтобы подвести вас к разговору об этом материале.

Карбоном называют композитный материал — углепластик

Карбон — это такое многослойное полотно, которое формируется из волокон углерода, завёрнутых в обёртку из полимерной смолы. Если же говорить о правильном нейминге, то именно карбоном называют углерод, из которого делают карбоновое волокно, также называемое углепластиком. Если же откинуть нудные рассуждения, то карбон = углепластик. Сегодня к числу таких веществ относят абсолютно все полотна, в состав которых входят углеродные волокна, а вот звенья между, которые их связывают, уже могут быть абсолютно разными. Таковы реалии.

Карбон — это современный материал. Но кроме уникальных особенностей у него также очень высокая стоимость. Когда за один килограмм стали обычно просят меньше одного доллара, качественный карбон оценивают в двадцать раз больше, и в ближайшее время его цена вряд ли опустится.

Первоначально карбон разрабатывали именно для автомобилей наивысшего класса и космической отрасли. Тем не менее, из-за небольшого веса и высочайшей прочности его используют в современных самолётах, для производства спортивного инвентаря, а также в технологической медицине.

Карбон состоит из отдельных нитей: как их производят

По окончанию окисления начинается процесс карбонизации. На этом этапе происходит нагревание материала в азоте или аргоне — при этом уже используется температура порядка 800–1500 градусов по Цельсию. В итоге в ходе этого процесса получаются структуры, которые напоминают молекулы графита. После этого происходит насыщение углеродом, что называют графитизацией — оно осуществляется в той же среде, но уже при температуре 1300–3000 градусов. Данный процесс может повторяться несколько раз, чтобы добиться концентрации углерода на уровне 99% — при этом материал постоянно чистят от азота. После этого он достигает необходимой прочности.

Немного о том, какими могут получиться полотна карбона

Корзина. Фактура этого волокна считается наиболее привлекательной. Тем не менее, его очень сложно выложить, чтобы не исказить рисунок — с таким умеют работать только настоящие профессионалы. А вот практической пользы у него не так и много.

Чтобы сделать карбон, используют несколько способов

Выше мы рассмотрели, как делают карбоновые нити, а также поговорили о вариантах плетения, которые нужны, чтобы создать из них полотно. Дальше из карбона нужно сделать готовую объёмную деталь для современного автомобиля, велосипеда и так далее. Для этого используют три способа.

Прессование. Это чуть ли не самый простой способ создать деталь из карбона. В его рамках полотно выкладывают в специальную форму, а потом пропитывают эпоксидной или полиэфирной смолой. После этого лишнюю пропитку попросту вытесняют чем-то вроде пресса или используют для этого вакуумные машины. Когда смола застывает, получается необходимая деталь. Смола в этом случае должна пройти по дороге полимеризации. Чтобы ускорить этот процесс, можно использовать повышенный температурный режим. На выходе обычно получается полая деталь, которую называют листовым углепластиком.

Намотка. Этот вариант работы с карбоновым волокном применяется только для создания труб и других аналогичных деталей. В данном случае оно всё так же пропитывается специальной смолой, а потом наматывается на заготовку соответствующей формы. Важно понимать, что и в этом случае, и в двух других, может быть не один слой волокна, а несколько. Как мы уже отмечали выше, если одновременно использовать карбон разного плетения, можно добиться оптимальных показателей по прочности, упругости и пластичности — это очень важно. Плюс ко всему, указанные операции обычно происходят не вручную, а на заводах в промышленных масштабах.

kak_eto_sdelano

Как это сделано, как это работает, как это устроено

Самое познавательное сообщество Живого Журнала

Оригинал можно посмотреть здесь.

Был у одного нашего заказчика такой проект: сделать линейку техники с корпусами из углеродного волокна. Лёгкие, прочные, красивые — сплошные плюсы. Только цена кусается. Вот и командировали меня на разведку: узнать как бы сделать то же самое, но подешевле.

Честно говоря, я ни разу до этого не видел, как производятся подобные вещи, и даже не представлял себе всю технологию. Поэтому сразу и с удовольствием взялся за задачу.

Но оказалось, что попасть на завод не так просто. Два производителя под разными предлогами отказались встречаться на производстве и настойчиво звали к себе в офис. У третьего офис и производство были в одном здании, и я недолго думая поехал к нему.

Завод выглядит вполне прилично, меня проводят в переговорную-шоурум.

От разнообразия образцов разбегаются глаза: карбоновый велосипед, детали для авто и мототюнинга, всякие штуковины непонятного назначения.

Целиковый капот для BMW — мечта пацанов с раёна.

Иногда в карбоновую ткань вплетают цветные нити: красные или синие, выглядит очень необычно.

Детали, покрашенные целиком, сразу и не отличишь от обычных. Обычно спортсмены так делают: им нужен низкий вес, а не понты 🙂

И нечто, неизвестно для чего нужное.

Но главной целью моего визита, было вот это:

Чехол для iPad. Меня интересовал не сам чехол, конечно, а похожие на него штуки: детали для корпусов телефонов, ноутбуков, планшетов. Было важно разобраться в технологии произодства, понимать, как правильно их проектировать, чтобы это было максимально дешево и технологично. Поэтому после долгих переговоров и уговоров я всё-таки напросился на экскурсию по цеху.

Производство занимает один этаж здания, тут чисто, но довольно пустынно.

Карбоновое полотно с нанесенным клеящим слоем поступает в рулонах. Оно бывает разной толщины, с разным рисунком плетения. Хранится в специальных холодильниках.

Ткань нарезается на куски по выкройке, и наклеиваются в несколько слоёв на матрицу. Матрицы бывают лёгкими, из чего-то типа пластика и с увеличенным ресурсом, из алюминия.

Матрицы, идущие в работу раскладываются прямо на полу, каждая в своём секторе.

Сам процесс наклейки карбона был расположен за стеклянными дверьми, но мне наотрез отказались его показывать, мол страшная коммерческая тайна. Но я не думаю, что там есть что-то секретное, просто вырезают ножницами, и укладывают лоскутки в форму.

После этого каждую деталь упаковывают в вакуумные пакеты.

Откачивают из пакетов воздух и загружают в одну из двух печей, побольше или поменьше.

Готовые детали извлекают из матриц. Если деталь сложной формы, то и матрица для неё будет сложносоставной, из нескольких частей.

Контроль качества перед сдачей на склад.

Как вы догадываетесь, это не весь процесс. Теперь у деталей нужно обрезать края и покрасить их лаком. Но это делается на другой площадке, у субподрядчика. Предлагали поехать посмотреть, но я отказался — вот там уж точно ничего нового.

Читать еще:  Станок для изготовления арболитовых блоков своими руками

Ой, вом же наверное интересно узнать про цены? Так вот, карбоновый чехольчик на iPad стоит с завода 25 долларов. А велосипед — несколько тысяч. Улыбаться перестанешь, как говорит один мой знакомый. И вариантов снижения особо не видать, слишком мелкосерийное производство, слишком много ручного труда.

Карбоновый велосипед

Углеводородное волокно или карбон — это материал, «сотканный» из нитей углерода. Они тонкие, как человеческий волос, но прочные, как сталь. Их очень тяжело порвать, но сломать вполне возможно. Именно поэтому при производстве деталей используют несколько слоев карбона. Накладывая карбоновые слои друг на друга в различном порядке, производители добиваются наибольшей износостойкости и ударопрочности. Несмотря на свою «молодость», карбон уже прочно закрепился на рынке высокотехнологичных материалов.

Использование карбона

Сначала им заинтересовались космические и военные специалисты. Еще бы! Вещество, позволяющее снизить вес в несколько раз и при этом имеющее отличные показатели в прочности — это ли не чудо?

Затем углепластик постепенно начал завоевывать автомобильную отрасль. Сначала это были отдельные детали, требующие высоких результатов в устойчивости к разрывам, сейчас же карбон чаще всего служит эксклюзивным украшением авто, например как карбоновая «юбка».

И вот, сравнительно недавно, углеводородное волокно стали использовать на благо спортивных достижений. В частности, оно широко применяется для создания велосипедной рамы.

Дань моде или шаг в будущее?

На протяжении многих лет рама велосипеда изготовлялась из стали или алюминия. Прочная, легкая, износостойкая — она идеальна для велотуризма и профессиональных марафонов. Но постепенно место железа занимает карбон, значительно превосходящий металл по многим показателям.

Все чаще на турнирах по велоспорту можно встретить карбоновые велосипеды, да и любители обычных прогулок по парку не гнушаются приобретать дорогостоящие модели. Оправдано ли такое массовое увлечение новыми технологиями или это всего лишь очередная модная тенденция?

Главный секрет углеводородного волокна заключается в его изготовлении. Сложный технологический процесс запекания деталей, их выпиливания и соединения дает гарантию надежности. Однако в погоне за быстрой прибылью, фирмы-однодневки часто сокращают стадии и время производства, тем самым значительно ухудшая технические характеристики.

Такие карбоновые рамы от качественных аналогов на глаз не отличишь, зато при любом, даже самом незначительном повреждении, байк развалится буквально под хозяином. И все же именно спрос рождает предложение. Желая оказаться в тренде и при этом сэкономить, многие велолюбители готовы рискнуть и приобрести карбоновый велосипед подпольного изготовления.

Сталь или карбон?

Главным конкурентом углепластика в вопросе надежности и долговечности является сталь. Многие приверженцы консервативных взглядов считают, что металл намного больше подходит для изготовления велосипедных рам. И на то есть весомые аргументы:

  • Цена. Стоимость типового байка из карбона сомнительного качества значительно превышает цену стальной рамы, сделанной на заказ.
  • Долговечность. На сайтах и газетных страницах частенько можно увидеть объявления о продаже «стального коня» с рук. Даже спустя 10, 20, 30 лет велосипед не утрачивает своих основных характеристик. Разве что потускнел от времени. При этом продажа подержанного байка из углепластика — случай редкий. Рама такого велосипеда не всегда находит второго хозяина.
  • Ремонт. И здесь любителям металла впору ликовать. Все дело в том, что при сильном ударе карбоновая рама не гнется, а ломается на части. Как ваза, разбившаяся о кафель. То есть восстанавливать двухколесного друга бессмысленно и дорого. Рассказывать же о ремонте стальных рам не имеет смысла. Каждый велолюбитель со стажем хотя бы раз самостоятельно паял или выравнивал детали. Да, внешний вид байка после этого, прямо скажем, не праздничный, но ведь это уже особого значения не имеет.

И все же карбоновая рама находят своего потребителя. Ведь новейшие технологии изготовления предлагают неоспоримые плюсы своего товара. Во-первых, вес углепластиковой рамы может быть меньше килограмма. Возможно, для катания вокруг дома или до магазина этот аргумент не слишком актуален. Зато легкость байка в полной мере оценят любители дальних туристических маршрутов. Когда велосипед необходимо пронести на себе в гору, каждый грамм имеет значение.

Во-вторых, амортизация на таком средстве передвижения продумана до мельчайших деталей. Ни одна кочка или пригорок больше не будут неприятно отзываться эхом во всех органах едущего. Карбоновая рама остается в неподвижном состоянии. Это неоспоримый плюс. Ну и, в-третьих, благодаря цвету и фактуре карбона, байк выглядит стильно и модно. На таком не стыдно и девушку на свидании прокатить!

Секреты производства

Многие мастодонты изготовления велосипедного «железа» все чаще приходят к выбору переориентирования производства на создание карбоновых деталей. И это вполне объяснимо.

Во-первых, углеводородная рама велосипеда делается вручную, с минимальным участием техники. А это значит, что можно сохранить количество рабочих мест и не растрачиваться на ремонт дорогостоящего оборудования.

Во-вторых, спрос на новейшие технологии только растет, а значит, сулит большую прибыль. И речь идет не только об обычных покупателях, но и о звездах велосипедного спорта мирового уровня! Так как же выглядит процесс изготовления карбона?

  1. Чаще всего углепластик поступает на завод в виде листов, пропитанных смолой. Реже — как катушки ниток;
  2. Материал режется на части, соответствующие деталям велосипеда. Однако уже здесь производители берут во внимание тот факт, что при наложении слоев, волокна должны «смотреть» в разные стороны для большей надежности. Поэтому полоски углеводорода не всегда идеально подходят под предполагаемую форму;
  3. Затем происходит непосредственное создание чуда. Карбон нагревают и как бы лепят с его помощью раму велосипеда. Этот процесс требует предельного внимания и сосредоточенности;
  4. Переходим к «горяченькому». Все детали фиксируются и укладываются на специальную форму. Пункт назначения: печь!;
  5. После нескольких часов томления, карбоновая рама достается, и ей дают остыть. На этом же этапе проверяют все стыки, неровности и недочеты;
  6. Теперь можно и шлифовкой заняться. Все основание будущего байка зачистят и покрасят;
  7. Рама готова!

Своими руками

Несмотря на довольно кропотливый технологический процесс, народные умельцы умудряются воссоздавать карбоновые рамы своими руками. В интернете можно найти массу видео и фото-инструкций с описаниями на эту тему, начиная от чертежей и заканчивая температурой печи. Удивительно, но у них действительно получается отличная рама! Может, получится и у вас? Ведь создание собственного байка своими руками — поистине бесценное удовольствие!

Карбоновая рама велосипеда — предмет долгих и жарких дискуссий в интернете. Одни считают ее дорогим, но бессмысленным китчем. Другие уверены, что время алюминия и стали осталось в прошлом и теперь будущее за высокими технологиями. Тратить ли все свои средства на приобретение карбона — решать только вам. Однако стоит лишний раз подумать и сделать правильный выбор.

Ссылка на основную публикацию
Adblock
detector