Электрохимическая коррозия нержавеющей стали

Электрохимическая коррозия нержавеющей стали

Одна из лучших статей о электрохимических реакциях с нержавеющией сталью и о коррозии нержавейки была опубликована в 2004 году в журнале КАТЕРА И ЯХТЫ по материалам фирмы Quicksilver Marine Parts & Accessories. Приведем здесь частично текст и изображения из этой статьи.

Спустя некоторое время мы наткнулись на тренд обсуждение этого материала на форуме о подводной охоте. Статья не претендует на «глубину» познания процессов, а скорее отвечает на вопрос: что же делать, и как не наступить на грабли? Истина где-то рядом с кислородом 🙂 и по теме топика там есть много здравых мыслей. Еще ветка есть тут.

Этому виду коррозии подвержены многие металлы, а в особенности — нержавеющая сталь. “Щель” в данном случае — это пространство под всевозможными отложениями (песка, ила и т.д.), под пластиковыми шайбами, фетровыми прокладками и т.д. — иначе говоря, место, из которого попавшая туда влага не может найти выхода и где образовалась застойная зона.

Нержавеющая сталь — это сложнолегированный сплав, в который входят хром и никель. Не ржавеет она благодаря образующейся на поверхности изделия тонкой пленке оксида хрома. Этот окисел хрома на самом деле идеально прозрачний и прочный как броня. Именно он защищает поверхность от ржавчины. При отсутствии кислорода оксидный слой разрушается, и нержавеющая сталь покрывается ржавчиной не хуже обычной. Иными словами, “нержавейка” не ржавеет только до тех пор, пока имеется доступ кислорода и покрывающие ее окисел хрома не разрушен. Вот именно понимание этого процесса позволит ответить на много вопросов о применяемости нержавейки.

Самый простой способ предотвратить данную разновидность коррозии (щелевой) — ограничить доступ влаги в “щели” с использованием герметика, вовремя удалять образующиеся отложения и обеспечить хорошую вентиляцию “сомнительных” мест. Краткие рекомендации по работе с нержавеющим крепежом также описаны на сайте интернет-магазина deel.ru дельных вещей и такелажа их нержавейки .

Расположенные под водой металлические детали обычно подвергаются двум типам коррозии: гальванической и так называемой “коррозии от блуждающих токов”.

Гальваническая коррозия представляет собой электрохимическую реакцию между двумя и более различными (или разнородными) металлами. Различными, потому что для того, чтобы началась реакция, один должен быть более химически активным (или менее стабильным), чем другой или другие. Когда мы говорим про гальваническую коррозию, то имеем в виду электрообмен. Все металлы обладают электрическим потенциалом, поскольку у всех атомов есть электроны, движение которых и есть электричество.

Гальваническая коррозия более активного металла начинается в тот момент, когда две или более детали из разнородных металлов, имеющие взаимный контакт (благодаря обычному соприкосновению, или же посредством проводника) помещаются в электролит (любую жидкость, проводящую электричество). Электролитом может быть что угодно, за исключением химически чистой воды. Не только соленая морская, но и обычная вода из-под крана благодаря наличию минеральных веществ является превосходным электролитом, и с ростом температуры электропроводность ее только растет (по этой причине корпуса судов, эксплуатирующихся в жарком климате, заметно больше подвержены коррозии, чем на Севере).

Процесс гальванической коррозии можно наиболее наглядно проиллюстрировать на примере алюминиевой подводной части подвесного мотора и гребного винта из нержавеющей стали. Алюминий — более химически активный металл — является в данном случае анодом, а менее активная нержавеющая сталь — катодом.

Вот что происходит, когда эта пара помещается в воду, играющую роль электролита (рис. 1):
1. На аноде:
a. Через место контакта (в нашем случае — через гребной вал) электроны перетекают с анода, металла более химически активного на катод — гребной винт. Происходит следующая реакция: Al ® Al+++ +3e.
b. При этом атомы более химически активного металла превращаются в ионы (этим термином обозначаются атомы с “недостатком“ или “избытком” электронов), которые устремляются в воду и связываются с ионами кислорода, обмениваясь с ними электронами и образуя оксид алюминия. (Процесс этот ничем не отличается от того, что происходит с ионами железа при образовании оксида железа).
c. Образовавшиеся молекулы оксида алюминия либо уносятся потоком воды, либо оседают на алюминиевой поверхности. Таким образом, подводная часть вашего подвесника в результате гальванической коррозии буквально растворяется в воде.

2. На катоде:
a. С анода поступают электроны, причем они не просто накапливаются, а вступают в реакцию с ионами электролита.
b. Реакция обычно происходит такая:
11/2 О2 + 3 Н2О + 6 е ® 6 ОН—.
c. Ион гидроокиси ОН— — щелочной, поэтому в районе катода образуется щелочная среда. (Следует отметить, что это обстоятельство надо обязательно иметь в виду владельцам деревянных корпусов — щелочь разрушает целлюлозу).

Очень важно понять, что следствием освобождения каждого позитивного иона металла на аноде обязательно является формирование негативного иона электролита, образующегося вследствие реакции электронов катода. Электрически анодные и катодные реакции должны быть эквивалентны. Рост или снижение уровня катодной реакции вызывает ответные рост или снижение уровня анодной реакции. Это ключевой факт для понимания процесса коррозии и управления им. Его можно проиллюстрировать эффектом влияния размеров анода и катода. Если к очень большому аноду подключить маленький катод, процесс коррозии анода пойдет медленно. А если поступить наоборот, то анод очень быстро разрушится.

Алюминиевых деталей на катере или мотолодке полным-полно. И если не контролировать процесс гальванической коррозии, все они быстро выйдут из строя.

Гальваническая коррозия может протекать даже в том случае, если на вашей лодке нет ни одной детали из нержавеющей стали. Предположим, что и подводная часть мотора, и винт алюминиевые, но лодку вы обычно ставите у пирса со стальной стенкой и подключаетесь при этом к береговой системе электроснабжения. Провод заземления (так называемый “третий” — дань безопасности) соединяет при этом алюминиевые детали лодки с погруженной в воду стальной стенкой (рис. 2). Если учесть внушительную массу стальной стенки, то и подводной части мотора, и винту грозят серьезные повреждения. Предотвратить их можно при помощи гальванического изолятора — своеобразного фильтра, отсекающего токи низкого напряжения и позволяющего при этом заземляющему проводу в случае пробоя изоляции или короткого замыкания выполнить свою функцию — отвести ток в землю и спасти вам жизнь.

Гальваническую коррозию подводных частей подвесных моторов и угловых колонок — или любых алюминиевых частей лодки — значительно ускоряет наличие деталей из нержавеющей стали, таких, как гребные винты, триммеры (особенно если они “заземлены” на двигатель), узлы дистанционного управления. Именно на них и уходят электроны алюминиевых деталей.

Другая причина, способная ускорить процесс гальванической коррозии — это уменьшение полезной площади анодных протекторов (о них тоже будет рассказано позже). Но и без наличия нержавеющей стали расположенные под водой алюминиевые детали все равно подвергаются воздействию гальванической коррозии — хотя и не столь интенсивной, как при контакте с иным металлом. При наличии электролита на большинстве однородных, вроде бы, металлических поверхностей все равно образуются крошечные аноды и катоды — в тех местах, где состав сплава неоднороден или имеются посторонние вкрапления или примеси — например, частицы металла с форм или штампов.

Нержавеющую сталь в качестве катода и алюминий в качестве анода мы использовали лишь в качестве одного из примеров; образовать “батарею” для запуска гальванической коррозии в паре с алюминием способен любой другой металл. К примеру, такая пара образуется и при контакте алюминия с цинком, только на сей раз катодом становится алюминий, а подвергается коррозии цинк — металл более химически активный. Один из худших врагов алюминия при образовании гальванической пары — это медь или медные сплавы (бронза).

Резюмируя сказанное, рекомендуется всегда обращать внимание при монтаже на ряд активности металлов: золото, нержавейка, бронза, медь, латунь, сталь, чугун, алюминий, цинк, магний. Чем дальше друг от друга стоят металлы в этом ряду активности, тем больше вероятность возникновения между ними электрохимической коррозии.

Например, категорически не рекомендуется использовать нержавеющий крепеж в контакте с алюминием, если этот узел подвергается интенсивному влиянию влаги. Вот тут нужно сделать оговорку. Именно нельзя, если нержавейка с алюминием будет в воде постоянно. Скажем ниже ватерлинии. Как раз наоборот, при монтаже деталей на корпусе лодки или на фасадных конструкциях, надо применять нержавейку по алюминию. Только использовать герметик для борьбы с щелями и затеканием. Оцинкованные детали для этого не годны совсем.

Еще один пример на основе таблицы активности металлов — соединение электрических алюминиевых и медных проводов между собой. Для соединения всегда рекомендуется использовать переходные клеммные колодки, которые есть в продаже в любом электротехническом магазине.

Другая причина гальванической коррозии — подключение к береговой электросети. При этом алюминиевая подводная часть вашего мотора или колонки посредством заземляющего вывода подключается к подводным частям других лодок и становится частью огромной гальванической батареи, связанной с погруженным в воду береговым металлом. При этом не только на вашей лодке, но и на соседних коррозия значительно ускоряется.

Произойти подобное может в том случае, если металл, по которому течет электрический ток, поместить в любой заземленный водоем (в реку, озеро, море, океан — без разницы, не в счет разве что стеклянный аквариум). Ток через воду устремится в землю. Следствием этого явится интенсивная коррозия в том месте, где произошел “пробой”. В наихудшем случае та же алюминиевая подводная часть мотора может разрушиться буквально за несколько дней.

Данная разновидность коррозии отличается от гальванической, хотя природа у них одна. Гальваническая коррозия вызывается соединением двух разнородных металлов и происходит за счет их электрических потенциалов. Один металл выступает в роли анода, другой — в роли катода. Здесь же электрический ток попадает на подводную часть лодки из внешнего источника и через воду уходит в землю.

К примеру, ваша лодка расположена между лодкой с утечкой постоянного тока и местом, являющимся хорошим заземлением для этого тока. Хотя ток могут уходить в землю и через воду, ваша лодка может явиться проводником со значительно меньшим сопротивлением. Таким образом, ток будет уходить в землю и с нее. Наиболее интенсивно коррозия будет развиваться в том месте лодки, откуда ток уходит в воду.

Блуждающие токи могут вызываться не только внешними, но и внутренними источниками — коротким замыканием в сети лодки, плохой изоляцией проводки, подмокшим контактом или неправильным подключением какого-либо элемента электрооборудования.

Наиболее распространенный внешний источник блуждающих токов — береговая сеть электроснабжения. Лодка с внутренним источником блуждающих токов (например, по причине повреждения изоляции одного из проводов) может стать причиной усиленной коррозии множества соседних лодок, подключенных к той же береговой электросети, если они обеспечивают лучшее заземление. Ток при этом передается на другие лодки посредством все того же “третьего” заземляющего провода.

Читать еще:  Станок для производства арболитовых блоков

Гораздо более неуловимый — но потенциально более опасный — случай коррозии блуждающих токов может происходить безо всяких проблем с электрооборудованием (и вашей лодки, и соседних). Предположим, что вы возвращаетесь на стоянку после выходных на воде, подсоединяетесь к береговому источнику, чтобы подзарядить аккумулятор, и спокойно уходите домой — автоматическое зарядное устройство само отключит зарядившуюся батарею. В понедельник по соседству с вашей лодкой причаливает большой стальной катер (с ободранной и поцарапанной краской). Владелец его тоже подключается к береговой сети и тоже оставляет свою посудину на несколько дней. Электрическая батарея готова — большой стальной корпус и небольшая подводная часть вашего мотора, соединенные заземляющим проводом. В зависимости от разделяющего их расстояния, разницы размеров и времени, которое ваш сосед решил провести на берегу, в следующие выходные вы можете обнаружить, что подводная часть вашего мотора либо просто покрыта белесым налетом, либо разрушилась чуть ли не полностью.

Коррозия нержавеющей стали

Нержавеющая сталь противостоит коррозии (не ржавеет) благодаря наличию тонкой оксидной пленки на поверхности. Эта пленка, в основном — окись хрома, очень легко образуется в окислительной среде, например, в воздухе (кислород — замечательный окислитель), и защищает нижележащий металл от коррозии. Металл, защищенный таким образом, называют пассивированным. Очень важно, чтобы оксидная пленка сохраняла свою целостность, не имела пор, трещин и т. п., в противном случае на незащищенных участках будет идти коррозия. Поверхность должна быть свободна от окалины, остатков шлака и т. д. Если пленка повреждена и условия не благоприятствуют ее образованию (например , нет доступа кислорода), поверхность металла остается незащищенной и может корродировать.

Следующие виды коррозии возникают чаще всего:

  • Коррозийная деформация сварного шва. возникает при сваривании нержавеющих труб. после интенсивного нагрева при сварке изменяется состава поверхностного слоя металла, может разрушиться оксидная пленка.
    Как избегать: избегать сварки нержавеющих труб. если сварка неизбежна — обрабатывать место сварки так чтобы заново сформировать защитную пленку (пассивировать место сварки).
  • Щелевая коррозия. «Щель » в данном случае — это пространство под всевозможными отложениями (песка , ила и т.д.), под шайбами, прокладками и т.д. — иначе говоря, место, из которого попавшая туда влага не может найти выхода и где образовалась застойная зона.
    Как избегать: ограничить доступ влаги в «щели », вовремя удалять образующиеся отложения и обеспечить хорошую вентиляцию «сомнительных » мест.
  • Электрохимическая коррозия (гальваническая ). Два металла с разными электрохимическими потенциалами (нержавеющая сталь и, например, аллюминий, обычная сталь или медь) помещенные в электролит (в водопроводной воде растворено достаточно солей чтобы считать ее электролитом) и соединенные друг с другом дают электрический ток (то же самое происходит внутри гальванического элемента, внутри самой обычной батарейки). Сам ток это не проблема. Проблема в том что один из металлов, тот у которого электрохимический потенциал больше — разрушается. Степень разрушения тем больше чем больше разница электрохимических потенциалов металлов.
  • Как избегать: не использовать металлы с разным электрохимическим потенциалами в одной конструкции. например делать всю конструкцию из одного матерала. Если два металла всё таки используются — избегать их электрического контакта друг с другом. Еще вариант — использовать металлы с близкими электрохимическими потенциалами, например нержавеющая сталь и бронза.
  • Углеродистая коррозия (разновидность гальванической), когда контактируют обычная и нержавеющая сталь (у них разные электрохимические потенциалы). Нержавеющая сталь в результате контакта с «ржавеющими » сталями сама начинает ржаветь.
    Как избегать: не монтировать изделия из нержавеющей стали вместе с изделиями из «обычной » стали. Нельзя пользоваться одним инструментом в работе с нержавеющей и «ржавеющими » сталями, без надлежащей очистки.
  • Коррозия от блуждающих токов. Начнем с того что при правильном монтаже всех элементов отопления и водопровода блуждающих токов быть не должно! Правильный монтаж — это заземление всех металлических элементов (батареи отопления, полотенцесушители, раковины, ванны, смесители). Например: каждая металлическая ванна в советское время заземлялась на водоровод отдельным проводником, т.к. иначе у нее не было контакта с водопроводной трубой.

    И всё таки — как эти блуждающие токи могут образовываться? Представьте себе полотенцесушитель из нержавеющей стали подключенный металлопластиковыми/пластиковыми трубами. При движении вода за счет трения о стенки (диэлектрик ) электризуется, и статический заряд накапливается на металлических элементах, получается своего рода конденсатор (если бы трубы были металлическими, проводящими, заряд бы не накапливался). Что происходит дальше — этот конденсатор разряжается, идет небольшой ток, и один из металлов начинает разрушаться, так же как и при электрохимической коррозии.
    Как избегать: заземлять ВСЕ металлические элементы системы. особенно при использовании пластиковых труб.

  • Коррозия от токов утечки в водопроводных трубах и трубах отопления (ток утечки это не блуждающий ток, это другое). По какой-то причине ток проходит через трубу из нержавеющей стали и сталь разрушается, как и при электрохимической коррозим.
    Опять же при правильном монтаже ток по трубам идти не должен! И всё таки, ток может идти по трубам если кто-то подключил заземление электроприбора к стояку. Это опасно в первую очередь не из за коррозии а из за опасности для жизни — представьте что стояк рассоединили во время ремонта, и заземление отсутствует. Ток может идти по трубам из за неисправностей системы заземления, зануления и уравнивания потенциалов.
    Как избегать: Не использовать водопроводные трубы и трубы отопления в качестве заземления электроприборов. Правильно монтировать систему заземления, зануления и уравнивания потенциалов. Использовать дифференциальные автоматы защитного отключения (УЗО ), реагирующие на токи утечки силой до 30 миллиампер.

Что делать, если ржавеет нержавейка

Нержавеющая сталь – высококачественный металл, прошедший легирование с добавлением ряда химических веществ, придающих антикоррозионные свойства. За счет легирования сталь становится невосприимчивой к действию влаги, воздуха, многих агрессивных сред. Но порой даже этот материал начинает портиться, на нем появляются некрасивые пятна ржавчины. Почему ржавеет нержавейка? Причин может быть несколько, и основная из них – неправильная эксплуатация.

Может ли нержавейка ржаветь?

Существует три группы нержавеющих сталей, каждая из которых имеет свои особенности и специфику применения:

  1. Коррозионностойкая сталь. Имеет высокую стойкость к коррозии в неосложненных условиях – в быту, на производстве.
  2. Жаростойкая сталь. Обладает термостойкостью, не ржавеет при повышенных температурах, может применяться на химических заводах.
  3. Жаропрочная сталь. Остается механически прочной при высоких температурах.

Таким образом, не все виды нержавейки предназначены для эксплуатации в той или иной агрессивной среде. К примеру, использование обычной нержавеющей стали на пищевом производстве, частое мытье с хлорсодержащими средствами вызовет быструю порчу материала. Аналогично применение металла в морской воде приведет к повышению скорости коррозии в разы.

Также ржавчина часто появляется на нержавейке после сварки (термической обработки), которая была произведена без соблюдения определенных правил. После механического повреждения металла последствия будут аналогичными: в месте дефекта возникнет точечная коррозия. Гладкий, полированный материал обычно ржавеет менее интенсивно, чем шероховатый: на последнем элементы коррозии могут появиться гораздо быстрее.

Защита от ржавчины нарушается там, куда попала раскаленная окалина, поскольку от сильного повышения температуры в нежаростойкой стали происходит выгорание легирующих веществ (в основном хрома). После прогорания дыр их края и прилегающие зоны становятся подверженными коррозии, хотя более глубокие слои металла чаще всего остаются неповрежденными. Спасти нержавейку поможет обработка травильными пастами, специальными эмульсиями.

Прочие причины коррозии нержавеющей стали:

  • контакт материала с обычной углеродистой сталью (в том числе посредством инструментов, которыми раньше резали простую сталь);
  • регулярная чистка металлическими щетками;
  • игнорирование механической или химической обработки сварного шва.

Причиной коррозии металла может стать и его изначально низкое качество. Стойкость стали к ржавлению обусловлена присутствием хрома в достаточном количестве. Этот элемент после воздействия воды, воздуха, кислот и щелочей формирует тончайший непроницаемый слой, который не дает материалу ржаветь. Если хрома в составе мало либо он распределен неравномерно, создание и поддержание оксидного слоя становится невозможным.

Факторы, определяющие стойкость металла к коррозии

Чтобы металл не был подвержен коррозии, он должен пройти пассивацию – переход поверхности в неактивное (пассивное) состояние, при котором на ней формируется тонкий защитный слой. Хорошая нержавейка быстро и легко пассивируется при обычных атмосферных условиях – контакте с кислородом из воздуха. Чем больше хрома в составе стали, тем выше ее пассивационная способность и антикоррозионные свойства.

Кроме хрома, легирование стали производят с помощью никеля. Он тоже способствует пассивации, но в чуть меньшей степени. Оба металла придают наивысшую антикоррозионную стойкость, хотя в состав стали могут вводиться и иные элементы: медь, ниобий, молибден. Для усиления защитных свойств любые добавки должны находиться в стандартном состоянии, а при изменении их структуры стойкость к коррозии падает (например, при переходе хрома в форму нитрида, карбида). Это может произойти во время контакта с сильными кислотами: серной, соляной, плавиковой.

Пассивный слой

Под пассивным слоем понимают тонкую оксидную пленку, которая формируется на стали после реакции хрома с кислородом. Она благоприятно воздействует лишь на свойства нержавейки: на обычной стали кислород при взаимодействии с атомами железа провоцирует формирование мелких пор и появление ржавчины. Слой коррозии тоже будет называться пассивным, ведь он реакционно инертен по отношению к окружающей среде.

Виды коррозии нержавеющей стали

По типу развития, причине появления и признакам выделяют несколько видов коррозии нержавейки.

Щелевая коррозия нержавеющих сталей

Щелевая коррозия – широко распространенный вид ржавления нержавейки. Она развивается там, где есть небольшой зазор в конструкции, например, когда вода проникает под крепежные элементы внутрь изделия. Второй поверхностью при этом обычно выступает резиновый уплотнитель, прокладка, а порой и металлический элемент.

Механизм формирования щелевой коррозии таков:

  1. Скопление агрессивных ионов в зазоре, вытеснение кислорода.
  2. Появление анода в зазоре (материал вне зазора при этом играет роль катода).
  3. Образование коррозии из-за изменения кислотности среды и электрохимических реакций.

Чтобы предотвратить щелевую коррозию, нужно правильно проектировать конструкции. Важно обеспечивать катодную защиту, которая снизит кислотность, а также улучшать текучесть среды.

Общая поверхностная коррозия

Общей коррозией называют равномерное нарушение структуры металла в части поверхностного слоя. Она вызывает разрушение оксидной пленки на большей части изделия или по всей его площади. Обычно причиной является контакт с сильными щелочами, кислотами, соединениями йода, фтора, брома. Главным же «врагом» нержавейки считается хлор – именно поэтому для ее чистки нельзя применять хлорсодержащие моющие средства.

Точечная коррозия (питтинг)

Больше всего питтинговой коррозии подвержены именно нержавеющие стали, а также сплавы на основе алюминия, никеля. В отличие от обычной стали, которая чаще страдает от общей поверхностной коррозии, такие материалы в большинстве случаев покрываются именно питтингами – мелкими дефектами. Локальное разрушение пассивного слоя происходит в таких ситуациях:

  • царапание, механическое повреждение;
  • местное изменение состава стали;
  • точечное воздействие ионов хлора, серы, галогенидов;
  • повышение температуры.

Точечное ржавление считается самым распространенным среди разных видов нержавейки. Из-за него в баках появляются дырки, в трубах, резервуарах – мелкие трещинки. Обычно их диаметр составляет не более 1 мм, при этом глубина может быть значительной – в этом состоит коварство данного явления. Как и в случае со щелевой коррозией, в роли анода будет выступать конкретный питтинг, а катодом станет остальная (неповрежденная) поверхность. Добавление молибдена к нержавеющей стали при ее производстве увеличивает стойкость изделий к точечной коррозии.

Интеркристаллическая коррозия

У такого процесса есть еще одно название – межкристаллитная коррозия нержавеющих сталей (МКК). Она возникает при резком повышении температуры, что случается, например, при сварке. Ржавление начинается, если при участии нагрева вдоль границ зерен проступает карбамид хрома, то есть структура этой легирующей добавки кардинально меняется. Для ферритной стали достаточная температура для формирования очагов коррозии равна +900 градусам, для аустенитной стали – +450 градусам.

Контактная коррозия

Данный вид коррозии развивается при прямом контакте разнородных металлов друг с другом под действием электролитов. К примеру, такое случается при состыковании разных металлических изделий в агрессивной токопроводящей среде – морской воде. В результате сталь локально портится, а менее благородные металлы могут и вовсе раствориться.

Числовой эквивалент стойкости к точечной коррозии (PREN)

Показатель RREN относится к справочным, он показывает склонность разных видов и марок нержавейки к появлению питтингов. Числовой эквивалент стойкости к точечной коррозии применяют как ориентир, но не как абсолютное руководство для предопределения коррозионной стойкости.

Обычно наиболее устойчивыми к точечному ржавлению оказываются молибден, хром и азот в качестве добавок при легировании. Чем выше цифра RREN, тем более стойкой будет сталь к появлению питтингов. Вот справочная информация по RREN:

ТД СпецКомплект

Физические характеристики сплавов Сплав АД1 — это алюминий технической чистоты, содержащий до 0,7% примесей, главные из которых — Fe и Si . Примеси Fe и Si ., а так же…

Прутки медные Тянутые медные прутки круглого, квадратного, шестигранного сечения и прессованные прутки круглого сечения производят по ГОСТ 1535-91. Прутки изготовляют в соответствии с требованиями настоящего стандарта из меди марок М1,…

Латуни представляют собой двойные или компонентные медные сплавы, в которых цинк является основным легирующим компонентом. По химическому составу двойные латуни, содержащие до цинка, называются томпаком, а латуни, содержащие 14-20% цинка…

К бронзам относят сплавы на основе меди, содержащие более 2,5% (по массе) легирующих компонентов. В бронзах содержание цинка не должно превышать содержание суммы других легирующих элементов, иначе сплав будет относится…

Где используется нержавеющая сталь Нержавеющую сталь используют во всех сферах деятельности человека, начиная от тяжелого машиностроения, заканчивая электроникой и точной механикой. Наиболее большее применение она нашла в: Строительстве и…

Биржа металлов

Курсы валют

Кто на сайте

Статистика

Типы Коррозии нержавейки

Нержавеющие стали не являются естественными благородными материалами как золото или платина, которые более или менее инертны в большинстве сред.

Коррозионное сопротивление нержавеющей стали зависит от тонкого невидимого пассивного слоя на стальной поверхности. Этот слой состоит главным образом из хромированной окиси, которая формируется в реакции с кислородом, содержащимся в воздухе.

Для самовосстановления, после повреждения этого слоя, сталь должна содержать, по крайней мере, 12% хрома.

Другие элементы сплава, например молибден и азот, призваны улучшать коррозионное сопротивление в коррозионных средах. Пассивный слой может нарушаться полностью или частично с последующей коррозией в результате. Тем не менее, пассивный слой имеет способность восстанавливаться в среде, содержащей кислород, даже не в больших количествах. Есть, тем не менее, среды, которые вызывают постоянную пассивного слоя. При обстоятельствах, где пассивный слой не может быть восстановлен, коррозия происходит на незащищенной поверхности.

Несколько форм коррозии могут произойти в безупречных сталях:

  • Однородная (сплошная) Коррозия
  • Гальваническая (контактная) Коррозия
  • Питтинговая (точечная) Коррозия
  • Щелевая коррозия
  • Атмосферной Коррозии
  • Коррозии межкристаллическая
  • Коррозионное растрескивание под напряжением
  • Коррозионная Усталость

СОПРОТИВЛЕНИЕ КОРРОЗИИ

Почему нержавейка сопротивляется коррозии?

Все металлы реагируют с кислородом в воздухе, формируя слой окиси на поверхности. Окись, сформированная на обычной стали позволяет окислению продолжать производить обычную ржавчину. Поскольку безупречные стали содержат больше чем 10.5 % хрома, характеристики окиси меняются. Богатый хромом окисный защитный слой или пассивный слой придает поверхности стали замечательное сопротивление коррозии, чтобы предотвращать ее появление. Это — явление известно как «пассивность».

Чрезвычайно тонкий (для листа толщиной 1 мм, относительная толщина пассивного слоя сопоставима листу бумаги, помещенной в вершину 20 этажного здания, этот невидимый инертный слой — чрезвычайно хорошо противостоит многим видам коррозии. Если марка стали выбрана правильно и соответствует условиям эксплуатации, слой довостанавливается спонтанно после случайного повреждения (Рис. 3). Действительно, стабильность пассивного слоя — решающий фактор, который определяет сопротивление коррозии нержавеющих сталей. Это зависит от характера коррозийной среды, которая определяет скорость окисления, уровень кислотности, содержание хлорида, температуру.

Вообще, увеличение содержания хрома, улучшает сопротивление коррозии нержавеющих сталей. Дополнение никеля поднимает общее сопротивление коррозии в более агрессивных условиях. Присутствие молибдена улучшает ограниченное сопротивление питтинговой коррозии. Практически, ферритные нержавеющие стали ограничены мягко-коррозийными окружающими средами и нормальной атмосферой. Оба из ферритных и аустенитных типов используются в производстве кухонной посуды, и домашних приборов, но из-за превосходящего сопротивления коррозии и простоты чистки, аустенитные предпочтены в отраслях пищевой промышленности и в производстве оборудовании для изготовления напитков. Поскольку аустенитные марки высоко стойкие к широкому диапазону химикалий (кислоты, щелочь . ) они часто находят применение в химических и перерабатывающих отраслях промышленности.

1. В любой нормальной окружающей среде окисления защитное покрытие пассивного хромистого окисного слоя автоматически формируется на поверхности нержавеющей стали

2. Когда поцарапан или механически поврежден этот защитный слой — поверхность стали лишается защиты атмосферному воздействию

3. Защитное покрытие быстро самовосстанавливается благодаря свойствам богатого хромом слоя

Понятие о коррозии металла.

Коррозия– это процесс разрушения металла под воздействием внешней среды. По механизму протекания различают химическую коррозию, возникающую под воздействием газов и неэлектролитов (нефть), и электрохимическую, развивающуюся в случае контакта металла с электролитами (кислоты, щелочь, соли, влажная атмосфера, почва, морская вода).

Электрохимическая коррозия имеет свои разновидности: равномерная (по всей поверхности) и локальная (на отдельных участках поверхности).

В неоднородном, а часто и в однородном, металле коррозионный процесс зачастую реализуется за счет возникновения на поверхности стали микрогальванических элементов в связи с наличием там участков, обладающих различным электрохимическим потенциалом.

Электрохимическая неоднородность может быть вызвана как наличием в сплаве нескольких фаз, так и разницей электрохимического потенциала на границе зерна и в объеме зерна. В данном случае по границам зерна реализуется интеркристаллитная (межкристаллитная) коррозия.

Стали, устойчивые против электрохимической коррозии, называются коррозионностойкими (нержавеющими) сталями. Устойчивость стали против коррозии достигается введением в нее элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, препятствующие непосредственному контакту с внешней средой, а также повышающие ее электрохимический потенциал в данной среде.

На рисунке 1 показано распределение наиболее популярных марок нержавеющих сталей группы AISI 400 и группы AISI 300 в координатах: электрохимический потенциал стали–индекс P.I. Чем выше находится марка стали на этом рисунке, тем выше ее электрохимический потенциал и, следовательно, выше коррозионная устойчивость стали.

P.I.=%Cr+3,3*%Mo для сталей группы AISI 400

P.I.=%Cr+3,3*%Mo+16*%N для сталей группы AISI 300

Исследования проводились в 3,5% растворе NaCI при температуре 30 градусов Цельсия

1. Равномерная (поверхностная).

2. Местная (точечная).

3. Межкристаллитная (по границам зерен).

4. Коррозия под напряжением (ножевая).

5. Электрохимическая коррозия.

Понятие межкристаллитной коррозии (МКК) и способы борьбы с ней.

Железо не является коррозионностойким металлом. Чистое железо активно взаимодействует со всеми элементами. Повысить коррозионностойкость можно введением легирующих элементов, которые вызывают его пассивацию. Пассивация — эффект создания на поверхности стальной детали тонкой защитной пленки, подслоем которой является кислород. Результат — электронный потенциал становится положительным и поверхность становится менее склонной к коррозии. Усиливают пассивацию Cr, Ni, Cu, Mo, Pt, Pd. Особенно сильно влияет Cr.

Химический состав: Cr13-30%, Ni4-25%, Mo до 5%, Cu до 1%. В зависимости от содержания легирующих элементов структура и свойства сталей могут быть различными. Если сталь содержит в основном Cr, который стабилизирует феррит, то сталь будет ферритной (низкая твердость, низкая прочность, высокая пластичность). Если сталь содержит в себе кроме Cr C, то ее структура будет мартенситной. Зная структуру стали, можно прогнозировать ее свойства и назначать режимы термообработки. Для определения, к какому структурному классу относится сталь, разработана диаграмма Шеффлера.

Экв. Ni=%Ni + 30(%C) + 0,5(%Mn).

Экв. Cr=%Cr + %Mo + 1,5(%Si) + 0,5(%Nb).

Cr повышает коррозионную стойкость только в том случае, когда его количество в растворе превышает 13%. Если количество Cr не слишком высоко и при этом сталь содержит много углерода, то происходит взаимодействие Cr и С с образованием карбидов. Особенно энергично образование карбидов наблюдается на границах зерен. При этом количество Cr в твердом растворе снижается. И если Cr менее 13%, то границы зерен становятся незащищенными. В результате коррозия легко может пересылаться по границам, не затрагивая центров зерен. Если скорость охлаждения велика, то карбиды по границам зерен образовываться не успевают. Количество Cr не снижается меньше 13%. Если скорость охлаждения очень мала, то при этом сначала образуются карбиды по границам зерен. При этом количество Cr снижается, но за счет диффузии из центра зерна происходит увеличение содержания Cr и стойкость восстанавливается. Если охлаждение идет таким образом, что содержание Cr на границах не успевает увеличиться и остается меньше 13%, то такая сталь склонна к межкристаллитной коррозии. Чтобы сделать сталь нечувствительной к межкристаллитной коррозии, нужно:

1. Понизить содержание углерода и азота.

2. Вводить в сталь другие карбидообразующие элементы более сильные, чем Cr (Ti, Nb).

3. Увеличить скорость охлаждения при термообработке.

Нагрев сталей, содержащих большое количество хрома, в интервале 400-800°С приводит к выделению в пограничных зонах зерен карбидов хрома Cr23C6 и обеднению в связи с этим указанных зон хромом ниже 12%-ного предела. Это вызывает снижение электрохимического потенциала пограничных участков аустенитного зерна и их растворение в коррозионной среде. Коррозионное разрушение имеет межкристаллитный характер, приводит к охрупчиванию стали, и называется межкристаллитной коррозией (МКК).

Для уменьшения склонности сталей к МКК в их состав вводят сильные карбидообразующие элементы – титан или ниобий – в количестве, равном пятикратному содержанию углерода. В этом случае образуются карбиды типа TiC и NbC, а хром остается в твердом растворе. Этот способ борьбы с МКК является наиболее дорогим.

Другим, более дешевым и распространенным, способом борьбы с МКК является производство нержавеющих сталей с минимальным (менее 0.4%) содержанием углерода (С). В таких сталях (пример, AISI 304, 304L, 316, 316L) образование карбидов хрома Cr23C6 резко ограничено из-за отсутствия углерода.

Добавление в стали типа AISI 316Ti небольшого количества титана (Ti) вызвано необходимостью придания стали специальных потребительских свойств.

Данные коррозийной устойчивости

Символы и сокращения

1 — хорошее сопротивление
2 — удовлетворительное сопротивление
3 — недостаточное сопротивление
4 — не рекомендуется
*** — кипение

Коррозионная безопасность промышленных конструкций из нержавеющих сталей

Более 100 лет назад, благодаря открытиям американских и английских инженеров-металлургов в жизнь человечества вошли чудесные всегда блестящие стали, которые не покрываются ржавчиной на воздухе, могут безопасно контактировать с водой, и даже агрессивные химические вещества, в частности кислоты, не нарушают их приятного блеска и целостности изготовленных из них изделий. В российской практике за такими сталями закрепилось название — нержавеющие (нержавейки). На заре своего применения нержавеющие стали в основном использовались для изготовления кухонных принадлежностей, однако потом начали активно применяться и в промышленности. В настоящее время уже накоплен большой опыт их использования, позволяющий не только восхищаться их уникальными свойствами, но и подметить некоторые ограничения в их применении, о которых в основном мы сейчас и поговорим.

Но начать нужно с объяснения природы уникальных противокоррозионных свойств нержавейки. Эти свойства любой нержавеющей стали (а их довольно много типов) определяются наличием в ее составе хрома, который при взаимодействии с внешней средой, содержащей агрессивное вещество (например, кислород), окисляется, образуя на поверхности стали защитную пассивную пленку оксида хрома, препятствующую дальнейшему коррозионному разрушению изделия. Это явление называется пассивацией нержавеющей стали. Наименьшее содержание хрома, обеспечивающее нержавеющим сталям возможность пассивации, составляет 12%.

Коррозионная стойкость нержавеющих сталей определяется устойчивостью пассивной пленки и зависит от природы агрессивной среды. С увеличением содержания хрома коррозионная стойкость нержавеющих сталей в окислительных условиях резко возрастает. Никель также способствует пассивации нержавеющих сталей, но в значительно меньшей степени. Дополнительно нержавеющие стали могут легироваться молибденом, медью, титаном, ниобием и др. элементами. Резко отрицательное влияние на коррозионную стойкость нержавеющих сталей оказывает увеличение содержания углерода. Для нержавейки российского производства состав стали зашифрован в ее названии, что регулируется ГОСТ 5632-72. Каждый легирующий элемент в нержавеющей стали обозначается буквенным кодом (например: хром — Х, никель — Н, молибден — М), а следующие за буквой цифры определяют содержание этого элемента в процентах. Типичное российское название — 03Х17Н14М3. В европейской практике и американской применяются коды в соответствии с системами стандартизации EN, ASME, ASTM и др.

Несмотря на описанные выше коррозионно-стойкие свойства нержавеющая сталь подвержена быстрому коррозионному разрушению в определенных условиях. Рассмотрим эти условия.

Поверхностная коррозия вследствие загрязнения железом

Если изделие из нержавеющей стали в процессе изготовления, транспортировки или эксплуатации вступает в прямой контакт с углеродистой сталью, то впоследствии на поверхности нержавеющей стали образуется тонкий слой бурой ржавчины. Лучшее средство предупреждения коррозии данного типа — это исключить контакты нержавеющей и углеродистой сталей: не приваривать углеродистую сталь к нержавеющей стали; всегда использовать для очистки щетки из исключительно нержавеющей стали и т.д.

Данный вид коррозии не ведет к нарушению целостности изделия из нержавеющей стали, а только портит его внешний вид.

Питтинговая (точечная) коррозия

Питтинговая коррозия — это вид крайне узко локализованной коррозии, приводящей к образованию небольших отверстий в металле. Данный вид коррозии невозможен в атмосфере и имеет место только при контакте изделия из нержавеющей стали с жидким или почвенным электролитом. Зарождение питтинга происходит в местах дефектов защитной пассивной пленки (царапины, разрывы) или ее слабых местах (если имеет место неоднородность сплава, например на сварных швах). Процесс зарождения питтинга более вероятен при недостаточном доступе кислорода к поверхности изделия, что не дает возможность возобновлять пассивную защитную пленку на поверхности металла при ее разрушении.

Стойкость нержавеющих сталей к питтинговой коррозии оценивается числовым показателем — PREN, который задает уровень потенциальной коррозионной устойчивости. Чем выше значение показателя PREN, тем выше устойчивость к точечной коррозии. Разброс значений данного показателя для существующих марок нержавеющих сталей составляет от 15 до 45 единиц.

Данный вид коррозии может привести к образованию сквозных дефектов и нарушению целостности изделия.

Щелевая коррозия происходит в узких зазорах между металлами (например, между болтом и гайкой) или между металлом и неметаллическим материалом (например, прокладкой) в случае попадания в них электролита. По механизму и результату аналогична питтинговой коррозии, однако скорость роста дефекта может быть выше за счет уменьшения доступа кислорода в щели. Может иметь место в трещинах в металле, зародившихся в результате коррозии под напряжением (см. ниже).

Данный вид коррозии может привести к образованию сквозных дефектов и нарушению целостности изделия.

В результате межкристаллитной коррозии избирательно разрушаются границы зерен в структуре стали. Это происходит из-за различий в концентрации элементов нержавеющей стали в самом зерне и на его границе, например с обеднением границ зерен хромом или обогащением их углеродом с последующим образованием примесей (карбидов хрома).

Межкристаллитная коррозия — очень опасный вид разрушения, т.к. визуально ее не всегда можно определить. Металл теряет свою пластичность и прочность, критически снижается ударная вязкость, что может привести к хрупкому разрушению конструкции под действием внешних напряжений.

Коррозия под напряжением

Коррозионному растрескиванию подвергаются металлические изделия и конструкции, в которых после механической или термической обработки присутствуют остаточные напряжения. Встречается коррозионное растрескивание при сварке, сборке или монтаже металлических деталей и т.п. Большое влияние на интенсивность коррозионного растрескивания оказывает коррозионная среда (ее характер, состав и концентрация агрессивных агентов). В результате коррозионного разрушения в металле образуются разветвленные колонии транскристаллитных и межкристаллитных трещин.

Хромоникелевые аустенитные стали более подвержены коррозионному растрескиванию. Введение стабилизаторов, легирующих компонентов, увеличение содержания никеля не оказывает существенного воздействия на склонность аустенитных сталей к коррозионному воздействию.

Коррозионное растрескивание — очень опасный вид разрушения изделия, так как может приводить к мгновенному образованию сквозных дефектов большой площади, и значит, к быстрому разливу всего содержимого емкости.

Блуждающими называются электрические токи в земле, возникающие за счет утечек из рельсов электрифицированных железных дорог, работающих на постоянном токе и использующих рельсы в качестве обратного провода. Источниками блуждающих токов могут быть также различные установки постоянного тока (телеграф, электросварочные аппараты, системы катодной защиты и пр.), использующие в качестве обратного провода землю. Известно, что электрическая проводимость металлов во много раз больше проводимости почв и грунтов. Поэтому любое подземное металлическое сооружение, в данном случае, подземные емкости, находясь в зоне распространения блуждающих токов, привлекает на себя эти токи, передает их как проводник более низкого омического сопротивления и возвращает их через землю к источнику постоянного тока.

При этом та часть металлического сооружении, из которой ток выходит в землю, является анодом, а та часть сооружения, где постоянный ток входит в него, является катодом. В анодных зонах при условии контакта сооружения с влажной почвой блуждающие токи вызывают электролиз и причиняют сооружению чрезвычайно большие коррозионные разрушения. Специфические защитные свойства нержавеющей стали никак не препятствуют данному виду коррозии.

Так как же тогда обеспечить надлежащее коррозионное состояние изделий из нержавеющей стали? Обратимся к нормативным документам Российской Федерации по коррозионной безопасности. Какие требования к конструкциям из нержавеющей стали в них присутствуют?

1 ГОСТ 9.602-2005 Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии

Устанавливает общие требования к защите от коррозии наружной поверхности подземных металлических сооружений из углеродистых и низколегированных сталей. На изделия и конструкции, в том числе подземные, из нержавеющей стали не распространяется .

2 СП 28.13330.2012 Защита строительных конструкций от коррозии

Содержит общие рекомендации о необходимости первичной (выбор конструктивных решений, снижающих агрессивное воздействие, и материалов, стойких в среде эксплуатации), вторичной и специальной противокоррозионной защиты. С точки зрения применения изделий и конструкций из нержавеющей или коррозионностойкой стали содержит несколько разрозненных требований, которые нужно искать по всему документу. Например, нержавеющая сталь предлагается в качестве конструкционного материала при наличии газовой коррозии.

Таким образом, подробные правила применения изделий (конструкций) из нержавеющей стали в различных внешних условиях в современной нормативной документации отсутствуют.

Качественное применение нержавеющих сталей в основном зависит от квалификации конструктора, проектировщика или строителя самого объекта. В таких условиях хотелось бы обратить внимание коллег на несколько достаточно простых правил, которые могут помочь принять правильное решение в простых случаях.

  1. При применении нержавеющей стали в атмосферных условиях обязательно тщательно выбирайте марку (состав) самой стали. Коррозионная агрессивность атмосферы зависит от многих факторов (подробнее см. здесь) . Особенно может быть опасен морской воздух и воздух, загрязненный промышленными выбросами. В таких условиях хорошая, но не специальная, нержавеющая сталь может в лучшем случае покрыться неэстетичными ржавыми пятнами.
  2. Так же осторожность нужно соблюдать при хранении в емкостях из нержавеющих сталей коррозионно-опасных жидких продуктов. Не каждая нержавейка способна противостоять кислотам или морской воде. В данном случае, дополнительно, особое внимание следует уделить качеству изготовления сварных швов на изделии. Именно в некачественных сварных швах нарушается то магическое соотношение железа и легирующих элементов, позволяющее нержавеющей стали противостоять коррозии. И именно сварные швы первыми дают течь, причем в некоторых случаях счет до времени возникновения первых сквозных повреждений идет на дни.
  3. Подземная (подводная) эксплуатация изделий и сооружений из нержавеющей стали без дополнительных мер противокоррозионной защиты крайне нежелательна и может быть допущена только в исключительных случаях. Например, попытка строительства подземных трубопроводов из нержавеющих сталей в СССР обернулась их быстрым разрушением вследствие питтинговой и межкристаллитной коррозии. В случае емкостей или других изделий (конструкций) с небольшой площадью поверхности и протяженностью (по сравнению с трубопроводами) необходимо тщательнейшим образом контролировать процесс установки и засыпки подземного сооружения из нержавеющей стали. Далее, крайне желательно оборудовать подземную конструкцию стационарным контрольно-измерительным пунктом для ежемесячного измерения электрохимического потенциала. В отдельных случаях изделия из нержавеющей стали могут обеспечиваться системой электрохимической (анодной) защиты и противокоррозионными неметаллическими покрытиями.
  4. Повысить коррозионную стойкость любой нержавеющей стали, особенно на начальном этапе эксплуатации, можно с помощью принудительной пассивации (образования защитной пленки оксида хрома) в промышленных условиях с использованием химических окислителей, например растворов бихромата натрия. Правда, пассивацию нельзя делать бездумно. Нужно тщательно проанализировать будущие условия эксплуатации (а также транспортировки и хранения) изделия — может быть среда не такая уж агрессивная, да и доступ естественного окислителя достаточен. Также очень важно провести именно равномерную пассивацию, иначе места с недостаточной толщиной/отсутствием оксида хрома могут затем подвергнуться точечной коррозии.

Конечно, это самые простые закономерности. Для решения сложных задач необходимы комплексные лабораторные и полевые коррозионные исследования. Этим применение нержавеющей стали в разных условиях ничем не отличается от других процессов коррозионного разрушения и соответствующих мер противокоррозионной защиты. Коррозия очень многообразна и продумать все заранее невозможно.

Тэги: блуждающие токи, коррозионная безопасность, коррозионная безопасность нержавеющей стали, коррозионная стойкость, коррозия нержавейки, коррозия нержавеющей стали, коррозия под напряжением, КРН, межкристаллитная коррозия, нержавейка, нержавеющая сталь, пассивация нержавеющей стали, питтинговая коррозия, поверхностная коррозия, противокоррозионные свойства нержавеющей стали, щелевая коррозия

Ссылка на основную публикацию
Adblock
detector