Что называется твердостью металлов

Какие методы измерения твердости металлов используются сегодня?

Твердость металлов является основным показателем, который важно учитывать при работе с ними. Для этого существуют методы научных исследователей, а также современные принципы с использованием высокотехнологического оборудования. Однако как выглядят все способы, и как на практике они работают?

В этой статье будут рассмотрены все прямые и косвенные методы проверки.

Почему важно измерять показатель?

Твердость металлов — это показатель, который означает устойчивость стали к механическому воздействию других более твердых материалов. Оцениваются показатели в единицах твердости, на основе которых делается вывод о состоянии материала.

Твердость металлов важно учитывать в большинстве видов работы с ними. Например, когда на производстве изготавливаются объемные конструкции с большим весом, где применяются несколько типов металлов, важно знать, что они будут оптимально взаимодействовать и успешно выдерживать большую нагрузку.

Особо важно учитывать показатель твердости металла в следующих сферах:

  • Кораблестроительство;
  • Изготовление автомобилей;
  • Сборка самолетов;
  • Изготовление строительных материалов на основе металла и расходников.

В любой из этих областей устойчивость к механическому воздействию определяет безопасность человека, возможность выполнить поставленную задачу и эксплуатационный срок.

Для определения твердости в металл вдавливается индентор — тело, изготовленное из твердого сплава или алмаза, которое обладает наилучшим показателем сопротивления к механическим воздействиям. Чем большую силу вдавливания выдерживает металл, тем его твердость больше.

Прямые методы

Классические способы измерения твердости представляют собой принципы, которые изобретались известными ученными и успешно проявляли себя в исследованиях на протяжении многих лет. Благодаря ним человечество сегодня имеет возможность пользоваться ископаемыми и успешно внедрять их в жизнь.

В измерении принимают участие специальное оборудование, которое устанавливается стационарно и дает большую нагрузку на материал с помощью индентора.

Способ Бринелля

Твердость металла на основе этого принципа измеряется с помощью специального твердомера. К его оправке крепится индентор из алмаза или прочного сплава в форме шарика определенного диаметра. Под заданной нагрузкой шар воздействует на металл в течение установленного времени.

После манипуляций на поверхности материала остается отпечаток индентора. На основе измерения его диаметра и площади выносится результат исследования и металлу присваивается определенный результат. Далее эта информация позволит успешно использовать материал или наоборот, убрать его из производства.

Единственный недостаток такого метода — отсутствие мобильности оборудования для измерения. Исследования можно проводить только на месте. При установке учитывается уровень поверхности пола и другие показатели, которые могу влиять на результат эксперимента.

Метод Роквелла

Основа принципа проверки заключается на твердости, которая определяется различием между глубиной углубления индентора, а также остаточным показателем проникновения под установленной нагрузкой. При этом показатели измеряются при сохранении предварительной нагрузки.

В методе исследования используется закаленный шарик или алмазный конус в качестве индентора. В отличие от предыдущего принципа, твердость исследуется на основе глубины лунки, а не ее площади.

Показатель измеряется в результате вдавливания, что позволяет получить максимально точный результат. Нагрузка дается поэтапно, согласно государственным стандартам. Сначала дается небольшое воздействие, после чего основное усилие. Современные твердомеры измеряют различие между глубиной лунок, которые получаются после вдавливания наконечника под предварительным и основным усилием.

Важно! При применении этого способа важно, чтобы на поверхности исследуемого материала не было трещин, окалин, выбоин и прочих повреждений, которые могут повлиять на правильность результата.

Следует следить за перпендикулярностью нагрузки, а также устойчивостью металла на рабочей поверхности.

Динамическое вдавливание

Бывают случаи, когда необходимо проверить показатели металла, который используется в конструкции, а переносимого образца под рукой нет. Стационарные установки для этого не подходят, поэтому предыдущие методы отходят на второй план. На помощь приходит мобильный прибор, который изготовлен на основе государственного образца.

Он представляет собой специальный молоточек и инструмент с шариком на конце. При ударе по прибору он оставляет следы на исследуемом материале. Также, следует провести аналогичные действия на эталонном образце, твердость которого уже известна.

Далее проводится сравнение отпечатков, их глубины и площади, после чего выносится результат исследования. Однако специалисты рекомендуют проверять твердость металла перед тем, как использовать его в каких-либо конструкциях важного назначения.

Принцип упругой отдачи

Помимо проблем со стационарностью оборудования, возникают ситуации, когда необходимо проверить показатели металла без нанесения ему повреждений. Для этого применяется принцип упругой отдачи, с помощью которого измеряют твердость без вдавливания и других механических воздействий.

На специальном приборе закрепляется шарик фиксированного веса на постоянной высоте. Далее он падает с нее на металл и отскакивает. Высота отскока прямо говорит о твердости. Чем больше отскок, не больше твердость металла. Производительность этого принципа является очень высокой, поэтому можно проводить около 100 измерений за один час.

Однако рекомендуется применять метод только для сравнения твердости изделий из одного материала (металла), ведь показатели упругости также могут влиять на результат исследования и должны быть одинаковыми.

Косвенные методы

Измерение показателя с помощью косвенных методов производится с помощью двух видов измерения — динамический и ультразвуковой. Они не исследуют твердость напрямую, а лишь сравнивают показатели металла и другие физические свойства.

Измерение твердости с применением ультразвука заключается в уровне изменения частоты колебаний металла с установленным на краю индентором. Чем больше глубина проникновения, тем мягче металл. Соответственно, чем больше площадь контакта, тем выше уровень затухания частоты. Принцип не имеет каких-либо ограничений по размерам и массе исследуемых металлов, поэтому широко используется на производствах.

Динамический способ исследует зависимость скорости отскока индентора от поверхности металла. Он похож на один из классических способов, но, помимо высоты отскока, измеряется его скорость и глубина отпечатка после ударения.

Преимущества метода заключаются в том, что он менее требователен к состоянию поверхности металла, а также позволяет увеличить количество исследований за определенное количество времени. Именно поэтому он часто используется во многих сферах производства.

Методы определения твердости металла

Твердость — это способность металла сопротивляться проникновению в него другого, более твердого тела.

Твердость металла является весьма важной характеристикой, так как тесно связана с такими основными характеристиками металлов и сплавов, как прочность, износостойкость и др.

В настоящее время имеется много способов определения твердости металлов. Рассмотрим некоторые из них, наиболее широко применяемые в промышленности.

Определение твердости вдавливанием стального шарика (метод Бринелля)

Стальной шарик, изготовленный из закаленной шарикоподшипниковой стали, под действием усилия вдавливается в поверхность металла.

С помощью специальной лупы измеряется диаметр лунки. По таблицам, приложенным к прибору, определяется значение твердости НЕ.

Для испытания применяют специальный пресс типа Бринелля, внешний вид которого показан на рисунке

Стальной шарик крепится в оправке 2.

Исследуемый образец ставится на предметный столик 1 и поднимается к шарику штурвалом 4.

При включении мотора 5 грузы пресса 3 опускаются и вдавливают стальной шарик в образец.

Для стали значение твердости, определенное этим методом, связано с пределом прочности соотношением, которым на практике иногда пользуются:

Определение твердости по глубине вдавливания алмазного конуса (метод Роквелла)

Алмазный конус с углом при вершине 120° вдавливается в металл предварительной постоянной нагрузкой 10 кг, а затем полкой нагрузкой 60 или 150 кг.

Для испытания используют специальный пресс, внешний вид которого показан на рис. 25.

Алмазный конус крепится в оправке 4.

Образец устанавливается «на столик 3 и поднимается с помощью штурвала 2 до нагрузки 10 кг.

Ручка 1 освобождает грузы6, которые создают усилие для вдавливания конуса в металл. Глубину вдавливания, т.е. значение твердости, отмечает индикатор 5.

Значения твердости этим методом определяются по разности глубины вдавливания алмазного конуса под действием полной и предварительной нагрузок.

Чем тверже металл, тем на меньшую глубину проникает алмаз при вдавливании, тем больше будет число твердости.

Стандартной нагрузкой при этом методе является 150 кг.

Обозначается твердость НRC. В некоторых случаях, например при измерении твердости на тонком образце или при измерении твердости поверхностного слоя металла, нагрузку применяют до 60 кг.

Измерение твердости мягких материалов

На этом же приборе можно производить измерение твердости мягких материалов (цветные металлы, отожженная сталь).

В этом случае используют стальной закаленный шарик диаметром 1,59 мм (1/16»). Стандартной нагрузкой является 100 кг, и величина твердости обозначается индексом НRB.

Определение твердости динамическим вдавливанием шарика

При изменении твердости массивных деталей и конструкций, когда нельзя использовать описанные выше приборы, применяют переносный прибор, показанный на рисунке:

В прибор закладывают эталонный образец 1. При ударе по прибору молотком специальный шарик 2 наносит отпечатки на исследуемый предмет и эталонный образец, твердость которого известна.

Читать еще:  Сталь хв5 характеристики применение

Сопоставляя значения диаметров лунок образца и детали по таблицам, определяют твердость детали.

Определение твердости методом упругой отдачи

В тех случаях, когда нельзя применять методы вдавливания, чтобы не испортить поверхности изделия, используется прибор, определяющий твердость металла методом упругой отдачи.

На рисунке показан внешний вид прибора:

С постоянной высоты на металл падает определенного веса боек и отскакивает. По величине отскока судят о твердости. Чем больше твердость, тем больше отскок бойка.

Производительность этого метода испытаний очень велика (несколько сот измерений в час). Однако применять его можно только для сравнения между собой твердости изделий из одного и того же металла или из металлов, имеющих одинаковые упругие свойства.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Определение твердости является одним из распространенных испытаний металлов. Оно отличается простотой техники, быстротой измерений и возможностью проведения их непосредственно на изделии.

Твердость металлов измеряют при помощи воздействия на их поверхность специального наконечника (индентора), изготовленного из малодеформирующегося материала (закаленная сталь, алмаз, твердый сплав) и имеющего форму шарика, конуса, пирамиды или иглы.

По способу воздействия индентора на испытуемый материал различают:

* статические методы определения твердости (метод вдавливания и метод царапания);

* динамические методы определения твердости (метод отскока падающего наконечника) и другие методы.

Метод вдавливания характеризует сопротивление металла пластической деформации при внедрении в него индентора из более твердого материала. Метод царапания характеризует сопротивление разрушению при воздействии на материал индентора в виде алмазной иглы. Метод отскока падающего наконечника характеризует сопротивление упругой деформации при динамическом воздействии на материал индентора в виде шарика.

Самым распространенным из перечисленных методов является метод вдавливания, который используется в приборах — твердомерах:

приборе для определения микротвердости (ПМТ).

Между твердостью пластичных материалов и другими механическими свойствами существует зависимость. Чем больше твердость металла определяемого вдавливанием, тем выше и его прочность, т.к. оба эти свойства представляют сопротивление пластической деформации. По этой же причине, чем тверже данный металл, тем ниже его пластичность.

Принципиальное устройство перечисленных твердомеров одинаково и может быть рассмотрено на примере прибора Бринеля (рис. 1). Основными узлами твердомеров являются станина, рабочий столик для измерения твердости образца или детали, наконечник (индентор), нагружающее устройство и прибор для измерения деформации.

Рисунок 1 – Устройство прибора Бринеля

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЮ

Измерение твердости по Бринелю производится в соответствии с ГОСТ 9012-59, срок действия которого продлен до настоящего времени.

При измерении твердости по Бринелю стальной закаленный шарик диаметром D вдавливается в испытуемый образец или изделие под действием нагрузки P в течение определенного времени. После удаления нагрузки измеряется диаметр d полученного при этом сферического отпечатка (рис. 2.а).

Рисунок 2. Схемы определения твердости:

б — по Роквеллу;

В качестве индентора при работе на приборе Бринеля используют стальной закаленный шарик диаметром d= 1; 2; 2,5; 5 и 10 мм.

Для того, чтобы значения твердости при разных испытаниях были сопоставимы, величину нагрузки при данном диаметре шарика следует выбирать используя соотношение:

(1)

Если нагрузка выражена в ньютонах:

(2)

ЗначенияK могут быть равны 30; 15; 10; 5; 2,5; 1 в зависимости от твердости контролируемого материала. Так для черных металлов и их сплавов (железо, сталь) и других высокопрочных материалов K = 30; для алюминия, меди, никеля и их сплавов K = 10; для олова, свинца и сплавов на их основе K = 2,5.

При выборе условий испытания также важно учитывать толщину металла и продолжительность выдержки образца под нагрузкой, в соответствии со стандартами.

Перед началом испытаний выбранный индентор закрепляется в шпинделе твердомера, с помощью сменных грузов устанавливается выбранная нагрузка. Затем, образец подлежащий измерению, устанавливается на столик прибора и столик поднимается вверх, прижимая образец к шарику, пока не загорится сигнальная лампочка. Таким образом на образец подается предварительная нагрузка, которая на приборе Бринеля составляет 100 кгс (981 Н). Затем нажатием кнопки на корпусе прибора включается механизм, который автоматически осуществляет полное нагружение, выдержку образца под нагрузкой и ее снятие.

После этого нужно опустить столик, снять образец, измерить диаметр полученного отпечатка с помощью специального микроскопа (рис. 3) и определить твердость.

Рисунок 3 – Измерение диаметра отпечатка по шкале лупы

Твердость, определяемая на приборе Бринеля обозначается HB и определяется как отношение нагрузки, действующей на индентор, к площади поверхности сферического отпечатка F:

(3)

А так как площадь сферического отпечатка равна:

(4)

Следовательно значение твердости будет равно:

(5)

Если нагрузка выражена в ньютонах, то значение твердости умножается на коэффициент равный 0,102.

Таким образом, диаметр отпечатка является критерием твердости по Бринелю.

Обычно вычисления твердости по вышеуказанной формуле не производят, а определяют твердость по таблице, которая приведена в ГОСТ 9012-59 или справочной литературе.

Зная число твердости по Бринелю, можно приближенно оценить временное сопротивление металла разрыву (предел прочности), используя количественное соотношение между этими характеристиками, установленное опытным путем. Например, для углеродистых сталей с твердостью HB от 120 до 175 используется соотношение:

sВ = 3,4 HB(6)

Временное сопротивление определяется в МПа (Н/мм 2 ).

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

В ряде случаев определение твердости на приборе Бринеля оказывается невозможным. Нельзя, например, испытывать закаленную сталь, так как, индентор прибора Бринеля также изготовлен из закаленной стали. Нельзя измерять твердость тонких поверхностноупрочненных слоев изделий, подвергнутых химико-термической обработке, и твердость различных поверхностных покрытий.

В этих случаях возможно применение других приборов — Роквелла, Виккерса, ПМТ.

Измерение твердости по Роквеллу проводится в соответствии с ГОСТ 9013-59. При этом индентором может служить алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,588мм (1/16 дюйма). При проведении испытаний индентор вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Ро и основной:

где Р1 — основная нагрузка (рис. 2.б).

Принципиальное отличие измерения твердости на приборе Роквелла от измерения на приборе Бринеля состоит в том, что твердость определяют не по площади отпечатка, полученного при вдавливании индентора, а по его глубине, которая и является критерием твердости при этом испытании.

Глубину вдавливания h определяют после снятия основной нагрузки и по ее значениям вычисляется величина твердости по Роквеллу HR. Естественно, чем больше глубина полученного отпечатка, тем меньше значение твердости.

Твердость по Роквеллу выражается в условных единицах. За единицу твердости принята безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

При испытаниях твердость можно измерять по трем шкалам: А, В, С.

При использовании в качестве индентора алмазного конуса твердость определяют по двум шкалам: А и С, при использовании шарика — по шкале В.

Число твердости по Роквеллу вычисляется по формулам:

— при измерении по шкалам А и С:

HRC (HRA) = 100 – e(8)

— при измерении по шкале В:

HRB = 130 – e(9)

где e = (h — ho) / 0,002(10)

При выборе условий испытания целесообразно руководствоваться следующими данными (табл. 1):

Результаты определения твердости фиксируются на индикаторе прибора, где имеются две шкалы — черная ми красная. Черная используется при измерениях с помощью алмазного конуса или конуса таких же размеров, изготовленного из твердого сплава (А и С). Красная шкала для измерений с помощью шарика (В).

Испытания проводятся в следующем порядке:

Устанавливается образец на столике прибора; образец приводится в соприкосновение с индентором с помощью механизма подъема и осуществляется предварительное нагружение. При этом индентор вдавливается в поверхность образца на глубину hо. Достижение предварительной нагрузки Ро = 10 кгс (98 Н) отмечается на шкале установкой маленькой стрелки на красной точке. Положение большой стрелки должно при этом совпадать с цифрой “0” черной шкалы. Если этого не произошло необходимо повернуть шкалу маховичком до точного совпадения этой стрелки с указанной отметкой.

Нажать на клавишу механизма нагружения, в результате чего на индентор подается основная нагрузка Р1, под действием которой он углубляется в образец. Выдержка под нагрузкой и снятие нагрузки происходит автоматически. В конечном положении большая стрелка указывает на значение твердости по соответствующей шкале.

Твердость по Роквеллу обозначается цифрами, характеризующими величину твердости, и буквами HR с указанием шкалы, например: 61,0 HRC; 42,0 HRB.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ И МИКРОТВЕРДОСТИ

В ряде случаев необходимо определить твердость тонких поверхностных слоев или распределение ее по сечению образца. Выполнить эти задачи на приборах Бринеля или Роквелла невозможно из-за больших размеров отпечатков. Для таких измерений используют приборы Виккерса или микротвердости (ПМТ).

В указанных приборах в качестве индентора используется четырехгранная алмазная пирамида с углами при вершине 136° (рис. 2.в). Число твердости по Виккерсу и микротвердость определяются как отношение действующей нагрузки Р к площади боковой поверхности полученного пирамидального отпечатка:

(11)

где d — среднее арифметическое длин обеих диагоналей отпечатка.

Для удобства и ускорения вычислений следует пользоваться таблицами, рассчитанными по приведенной формуле.

Испытательные нагрузки при измерениях на приборе Виккерса (ГОСТ 2999 — 75) выбираются в пределах от 5 до 120 кгс (от 49 до 1176 Н). При измерениях микротвердости нагрузки значительно ниже: от 0,005 до 0,5 кгс (от 0,05 до 5 Н). Благодаря этому в последнем случае значительно меньше и размеры полученных отпечатков, что делает возможным определение твердости отдельных структурных составляющих.

Читать еще:  Электромагнитная плита своими руками

Измерение диагоналей полученных отпечатков проводится с помощью микроскопов.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

1. Перед проведением практической части работы необходимо ознакомиться с приборами, на которых предстоит проводить измерения, с техникой измерений и методикой определения результатов.

2. Провести измерение твердости углеродистой отожженной стали (40, 60), дюралюминия и меди на приборе Бринеля. Для этого:

a. Выбрать нагрузку, исходя из данных, приведенных в методических указаниях;

b. Получить отпечаток индентора на перечисленных материалах;

c. При помощи специального микроскопа определить диаметр полученного отпечатка с точностью до сотых долей миллиметра;

d. Используя формулу для определения твердости по Бринелю (5) определить значение твердости испытуемых материалов и занести данные в таблицу 2;

e. При помощи таблиц проконтролировать правильность определения значений твердости и табличные данные также занести в таблицу 2.

3. Провести измерение твердости инструментальной закаленной стали У8 и конструкционной низкоуглеродистой стали 30 на приборе Роквелла. Для этого:

a. В соответствии с таблицей выбрать шкалу, по которой будет проводиться измерение твердости;

b. В соответствии со шкалой выбрать индентор и нагрузку для определения твердости;

c. Данные измерений занести в таблицу 3.

d. Данные твердости полученные по шкале С и В в соответствии с таблицей перевести в твердость по Бринелю и занести в таблицу 3.

4. Сопоставить значения твердости различных материалов (сталь, медь, дюраль) и сталей с различным содержанием углерода (30, 40, 60, У8) и способом обработки (отожженная или закаленная). Результаты отразить в выводе.

Определение твёрдости металлов

Твёрдость – один из важнейших эксплуатационных показателей деталей механизмом и машин, который во многом определяет их стойкость и долговечность. Поэтому у нас в стране испытания на твёрдость стандартизированы, и проводятся в строго определённо последовательности.

Независимо от метода значение твёрдости устанавливается по результату контактирования рабочего элемента – индентора – с предварительно подготовленной поверхностью изделия. Если такой контакт происходит в течение некоторого времени, то испытание на твёрдость называют статическим, в противном случае – динамическим.

Выбор метода определения твёрдости зависит от условий работы детали, точности полученного результата и воспроизводимости испытания при различных условиях его проведения

Твёрдость по Виккерсу: методика и оборудование

Пирамидальный индентор прибора Виккерса должен обладать строго определённым соотношением сторон и площади основания пирамиды, которые оговариваются ГОСТ 2999. В результате внедрения на поверхности исследуемого образца остаётся отпечаток в виде ромба (иногда – неправильного). По значению диагонали этого ромба (или среднего арифметического значения обеих диагоналей) устанавливают число твёрдости Виккерса, которое имеет размерность механического давления.

Выпускаемое оборудование, при помощи которого можно определить твёрдость по Виккерсу относится к машинам статического действия. Они могут быть стационарными и переносными. Линейка видов такого оборудования отечественного производства маркируется ТП (Твёрдость Пирамидальная).

Стандартными условиями для проведения испытаний служат:

  • Измерительный диапазон усилий нагружения 49….1176 Н, который в твердомерах ТП имеет 7 ступенчато изменяемых положений;
  • Время выдержки образца под давлением – не менее 5 с.
  • Принцип измерения диагоналей отпечатка.

Измерение твёрдости по Виккерсу HV выполняется в следующей последовательности.

  • Образец или деталь устанавливается на стол прибора измеряемой поверхностью вверх. После этого стол вращением рукоятки маховика поднимают вверх, до лёгкого соприкосновения с индентором.
  • Отпускают рычаг, приводя тем самым в движение нагружающий механизм. После установленной с помощью реле времени продолжительности измерения нагрузка снимается, и рабочая головка, с закреплённым в ней индентором, возвращается в исходное положение.
  • После этого можно развернуть приборный стол с образцом к имеющемуся на станине твердомера отсчётному микроскопу, и замерить диагонали отпечатка.

Предварительные установки твердомера Виккерса производят при помощи рукоятки настройки. При этом с уменьшением толщины образца нагрузку следует принимать меньшей. Твёрдость по Виккерсу иногда указывается при значении рабочей нагрузки. Например, обозначение HV50940 отмечает, что твёрдость по Виккерсу в 940 единиц была получена после нагружения образца усилием 50 кг.

Достоинствами метода Виккерса являются:

  1. Постоянство отношения диагоналей получаемого отпечатка при изменении рабочей нагрузки.
  2. Возможность определения твёрдости сколь угодно тонких слоёв материала изделия, поскольку в своём крайнем положении индентор имеет весьма малую площадь поверхности.
  3. Повышенная точность результата, вследствие высокой твёрдости алмазной пирамидки индентора и, следовательно, отсутствием деформации самой испытательной головки.
  4. Широкий диапазон измерений, который охватывает как сравнительно мягкие металлы — алюминий, медь, так и высокопрочные стали и твёрдые сплавы.
  5. Метод Виккерса позволяет определять твёрдость отдельных слоёв металла, например, цементированного при химико-тнермической обработке образца, или слоя с изменённым химическим составом — после поверхностного упрочнения, либо легирования.

Практический диапазон измерения твёрдости по Виккерсу – 145….1000HV. Ввиду высокой точности метода, для оценки параметра НV больших партий заготовок широко применяются автоматизированные установки Briviscope и Briro от немецкой фирмы Reicherter с гидравлическим и электромеханическим приводом, а также с автоматизацией отсчёта результатов, которые выводятся на монитор.

Твёрдость по Бринеллю: методика и оборудование

Условия измерения твёрдости стандартизированы ГОСТ 9012, и распространяются на сталь, чугун, цветные металлы и сплавы, при этом температура испытания должна находиться в пределах 20±10 0 С. Метод Бринелля также относится к статическим.

Определяя НВ, полагают, что твёрдость испытуемой детали будет зависеть от площади отпечатка. В некоторых приборах в комплект рабочего индентора входит также шарик из вольфрамокобальтового твёрдого сплава, в связи с чем практический диапазон измеряемой твёрдости увеличивается.

Стандартом определены следующие начальные условия для оценки твёрдости по методу Бринелля:

  • Нагрузка на поверхность должна находиться в пределах 12,25…29420 Н;
  • Размерный ряд стальных шариков – 1,0…10 мм;
  • Длительность нагружения 10…15 с.
  • Диапазон отпечатков на образце не должен выходить за пределы (0,2…0,7) D, где D – диаметр шарика.

Измерение твёрдости производится с применением отечественных твердомеров Бринелля типа ТШ (Твёрдость Шариком), а также более современными приборами типа БТБ. С целью измерения величины НВ в полевых условиях, либо непосредственно у машины/конструкции выпускаются переносные твердомеры типа ТШП. Для измерения размеров полученного отпечатка необходим также специальный отсчётный микроскоп МПБ-2, что делает сам процесс определения твёрдости менее мобильным.

Измерение твёрдости на твердомере БТБ происходит так:

  • Изделие устанавливают на измерительный стол и фиксируют по упору.
  • На приводе набирается требуемое значение нагрузки и через шпиндель прикладывают её к образцу.
  • После выдержки под давлением рабочая головка с индентором возвращается в исходное положение, а на экране перед рабочей головкой стрелочный индикатор показывает величину диаметра отпечатка.
  • Само значение НВ устанавливается по отсчётным таблицам на станине твердомера. Для смены рабочей нагрузки предназначен комплект переустанавливаемых штырей.

Переносные твердомеры Бринелля при помощи струбцины прикрепляются к требуемому месту на детали, а нагрузка создаётся поворотом рукоятки, снабжённой упорной резьбой.

Практический диапазон измерения твёрдости НВ составляет от 8 до 450 НВ. Это соответствует основной массе марок сталей и сплавов, применяемых для производства металлоконструкций.

Методом Бринелля можно оценивать и твёрдость деталей в горячем состоянии – это положительная особенность способа. К числу недостатков следует отнести невозможность определения твёрдости на кромках и краях образцов, а также у деталей с малой толщиной.

Твёрдость по Роквеллу: методика и оборудование

Условия проведения испытания регламентированы ГОСТ 9013, и включают в себя:

  • Предварительное нагружение изделия, в ходе которого ликвидируется влияние всех поверхностных факторов: шероховатости, температуры, скорости внедрения индентора и др.;
  • Нагружение основным усилием, при котором и выполняется отсчёт.
  • Снятие загрузки.

В отличие от предыдущих методов, твёрдость по Роквеллу принимается по одной из трёх шкал:

  • Шкалы А (обозначение твёрдости НRA, в качестве индентора используется алмазный конус), которая используется для весьма твёрдых высокоуглеродистых легированных инструментальных сталей и твёрдых сплавов. Диапазон измерений 60…80 HRA;
  • Шкалы В (обозначение твёрдости НRВ, в качестве индентора используется стальной закалённый шарик), которая используется для сталей средней твёрдости и сплавов цветных металлов. Диапазон измерений 35…100 HRВ;
  • Шкалы С (обозначение твёрдости НRС, в качестве индентора используется алмазный конус), которая испольуется для сталей средней твёрдости. Диапазон измерений 20…90 HRС.

Кроме того, для специфических условий измерения твёрдости (например, для холоднокатаных тонколистовых сталей) применяется группа методов СуперРоквелл (шкалы HRN и HRT).

Как и в предыдущем случае, твердомеры Роквелла — типа ТК (Твёрдость Конусом) могут быть стационарными и переносными. Стационарные твердомеры управляются электромеханическим или гидравлическим приводом. Замеры твёрдости по Роквеллу отличаются большей сложностью, что обуславливается необходимостью задать сначала первичную, а затем — вторичную скорость перемещения индентора.

В отличие от индентора на приборе Виккерса, в твердомерах Роквелла алмазный наконечник имеет форму конуса, поэтому точность измерения размеров отпечатка здесь несколько хуже.

Читать еще:  Химическое никелирование алюминия

Твёрдость по Шору: методика и оборудование

Все предыдущие способы измерения твёрдости отличаются одним недостатком – на поверхности исследуемой детали остаётся отпечаток. Иногда это не даёт возможность вновь установить деталь в узел или конструкцию. Метод Шора позволяет определять твёрдость изделия HS без деформации его поверхности.

Установка определения твердости по Шёру: 1 — Боек во взведённом состоянии. 2 — Образец испытаний. 3 — Направляющая труба. 4 — Положение отскочившего бойка

Способ Шора относится к динамическим, и заключается в следующем. К измеряемой поверхности (она может быть вертикальной или горизонтальной) подводится портативный твердомер Шора, чаще называемый склероскопом. Если материал – мягкий, то величина отскока будет меньше, поскольку энергия удара будет поглощаться поверхностью детали. Наоборот, если деталь – твёрдая, то вся энергия перейдёт в работу упругого отскока.

Рабочим органом склероскопа Шора является стальной боёк с алмазным наконечником. Сравнивая расстояние, на которое возвратился боёк после удара. Можно установить твёрдость испытуемой детали.

Диапазон измерений твёрдости по Шору составляет 30…140 НS, при этом твёрдости закаленной высокоуглеродистой стали соответствует значение 100 НS. Склероскоп Шора не повреждает поверхность изделия, а потому может использоваться в тех случаях, когда необходимо оценить твёрдость детали, находящейся в составе какого-либо действующего узла. Этим обеспечивается предупреждающая оперативная диагностика механизма или металлоконструкции.

Метод Шора прост в применении, отличается быстротой оценки твёрдости, возможностью повторного использования прибора на той же детали. Однако имеются и ограничения:

  • Параметр НS не стандартизирован (хотя в справочниках имеются пересчётные таблицы и графики для перевода единиц твёрдости по Шору в единицы HV, HR или НB);
  • Высота отскока бойка зависит от модуля Юнга материала детали, а потому сопоставимость единиц твёрдости по Шору для разных материалов невозможна;
  • Поскольку критерием твёрдости НS является величина отскока бойка, то рассматриваемый параметр имеет лишь сравнительное значение;
  • Точность измерений на склероскопе Шора ниже, чем на твердомерах, которые были рассмотрены ранее.

Иные методы

Кроме перечисленных методов для оценки твёрдости ограниченно применяются также способ Мооса (царапанием сапфировой иглой по поверхности образца), пластико-динамический способ Польди и ряд других. Необходимо отметить, что для определения твёрдости тонких поверхностных слоёв широко применяют метод микротвёрдости с использованием прибора ПМТ-3. По сути, это способ Виккерса, модернизированный под малые толщины измеряемых поверхностей.

Перевод единиц твёрдости

Перевод единиц определённой разными способами, можно выполнить с помощью следующей таблицы.

Что такое твердость стали? (ч.2)

Востребованность указанных методов измерения твердости металла объясняется их следующими особенностями:

  • все описанные методы позволяют производить измерения каждого готового образца в отдельности, что, несомненно, повышает качество серийной продукции;
  • не происходит разрушения готового изделия (например, ножа) и в дальнейшем его можно использовать по назначению;
  • высокая скорость измерений, а значит большая производительность метода.

Важно: Результаты испытаний с помощью различных методов несопоставимы между собой.

Рассмотрим каждый метод в отдельности, уделив особое внимание методу Роквелла.

Метод Бринелля

Этот метод был предложен шведом Юханом Августом Бринеллем начале 20-го века. На тот момент, это был самый точный способ определения твердости металлов. В качестве индентора используются стальные шарики различного диаметра (от 1,2 до 10 миллиметров). Диаметр шарика выбирается в зависимости от предполагаемой твердости металла.

Бринелль разделил металлы на несколько групп, объединив их по твердости. В группу с минимальной твердостью попали олова, свинец и их сплавы. В группу с самой высокой твердостью вошли титан, никель и стальные сплавы. Для металлов с минимальной твердостью используется шарик самого малого диаметра, для металлов высокой твердости используется шарик самого большого диаметра.

Измерения происходят по следующему алгоритму: проверяемый образец помещают на специальный стол, сверху в образец происходит вдавливание индентора с постепенно увеличивающейся нагрузкой. Это происходит в течение короткого промежутка времени от 2-х до 8-ми секунд. После достижения максимального уровня динамической нагрузки, нагрузка поддерживается в статическом состоянии, примерно в течение 10-ти секунд. После завершения процедуры, на проверяемом образце замеряют диаметр отпечатка.

Расчет твердости происходит по формуле, где учитываются приложенная нагрузка, диаметр индентора и диаметр отпечатка. Твердость указывается в формате кгс/мм2, формат отображения HBW.

Метод Виккерса

При измерении твердости по методу Виккерса в качестве индентора используется наконечник в форме пирамиды, грани которой сходятся между собой под углом в 136 градусов. Для обеспечения точности испытания важно соблюсти несколько моментов:

  • нагрузка должна приходиться строго в центр алмазного наконечника;
  • вектор приложения нагрузки должен быть строго перпендикулярен поверхности испытуемого образца.

Измерения происходят по следующему алгоритму: проверяемый образец помещают на специальный стол, сверху в образец происходит вдавливание индентора сразу с необходимым уровнем нагрузки (максимальное возможное значение до 100 кгс). Далее происходит удержание индентора под нагрузкой в течение 10-15 секунд. После снятия индентора происходит измерение глубины вдавливания и диагонали отпечатка.

Далее происходит расчет по форму, где учитывается соотношение приложенной нагрузки к диагонали отпечатка и времени в течение которого происходило испытание.

Твердость указывается в формате кгс/мм2, формат отображения HV. Метод Виккерса за счет использования алмазного наконечника позволяет делать более точные измерения, чем метод Бринелля.

Метод Шора

Этот метод является продолжением всем хорошо известного метода «постукивания», когда постукивая по детали или заготовке, мастер пытается определить ее твердость. Метод предложен американский инженером Альбертом Шором в начале XX века. Суть метода заключается в том, что твердость металла определяется по высоте отскока индентора.

Прибор для измерения твердости состоит из полой трубки, на которой по всей длине сделан пропил с нанесенными делениями. Трубка устанавливается на поверхность измеряемого образца и в нее сбрасывается боек с алмазным наконечником. Твердость металла определяется визуально по высоте отскока бойка. По сути, этот прибор является «склерометром».

Данный тип измерений не дает высокой точности, но отлично подходит для экспресс-оценки твердости сплавов на металлургических производствах, когда нужно оперативно определить твердость большой детали или детали, которая имеет сложную поверхность.

Формат отображения твердости по Шору HSD (или HSC, в зависимости от используемой шкалы).

Метод Роквелла

В последнее время этот метод получил большое распространение, благодаря своей простоте и универсальности. Метод Роквелла не требует проведения дополнительных вычислений и значение измерения сразу выводится на шкалу прибора.

Этот метод придумали два однофамильца, которые носили одну фамилию Роквелл. Звали их Хью и Стенли. Оба они работали в металлургическом холдинге в штате Коннектикут, где в то время остро встал вопрос оперативного измерения твердости элементов подшипников. Существующий метод Бринелля не позволял производить измерения с высокой точностью, а также не позволял производить испытание на каждом готовом экземпляре.

Роквелы придумали способ измерения твердости, основанный на измерении разности глубины проникновения индентора в образец под разной нагрузкой.

Измерение твердости по методу Роквелла происходит по следующему алгоритму: выбирается соответствующая шкала и индентор, образец помещается на специально подготовленный стол, к нему прилагается предварительная нагрузка в 10 кгс, нагрузка снимается. Далее прилагается основная максимальная нагрузка, нагрузка снимается. Результат последнего измерения является величиной твердости металла по Роквеллу.

Для измерений по методу Роквелла используется 11 шкал, которые отличаются друг от друга типом (и формой) индентора и нагрузкой. Все шкалы имеют буквенное обозначение: A; B; C; D; E; F; G; H; K; N; T.

Чащ всего используются шкалы:

А (нагрузка 60 кгс, в качестве индентора используется алмазный наконечник с углом в 120 градусов);

В (нагрузка 100 кгс, стальной закаленный шарик с диаметром 1/16 дюйма);

С (нагрузка 150 кгс, в качестве индентора используется алмазный наконечник с углом в 120 градусов).

В качестве единицы измерения берется условная глубина, на которую индентор погружается в образец. Одно деление считается равным 0,002 миллиметра. При использовании в качестве индентора алмазного конуса, максимально возможным считается погружении на 100 делений, а при использовании шарика на 130 делений.

Важные моменты, которые нужно учитывать при проведении измерений:

  • толщина образца (ширина образца должна быть в 10 больше глубины проникновения);
  • размер расстояния между оттисками (минимально допустимое расстояние — 3 миллиметра);
  • нагрузка должна прикладывать строго перпендикулярно к поверхности образца;
  • образец должен быть максимально прочно зафиксирован на испытательном стенде;
  • для получения максимально точного результата требуется проведение 3-х кратного измерения.

Преимущества проведения измерений по методу Роквелла:

  • измерять можно любое металлическое изделие, даже если не известен его состав;
  • не требуется чистка и полировка поверхности;
  • минимальное повреждение поверхности проверяемого образца;
  • нет необходимости производить дополнительные измерения и расчеты, прибор сразу показывает твердость изделия на специальной шкале;
  • удобство проведения измерений, их скорость;
  • возможность автоматизации процесса, можно производить измерения на конвейере;
  • возможность оперативно проводить испытания с опытными и экспериментальными образцами.

Рассмотрев основные варианты измерения твердости металлов, можно сказать, что на сегодняшний день, одним из самых удобных методов, который получил распространение в ножевой промышленности, является метод Роквелла, благодаря своему удобству, точности и высокой производительности.

Ссылка на основную публикацию
Adblock
detector